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games with noise corrupted measurements ee-Ibeen hampered by t1he so

called closure problem of stochastic differential games. The solutions
required either an infinite dimensional dynamic system or the determin-

ation at each time t of the error in the opponent's state estimate.

In this cissertation, solutions to differential games with noise

corrupted measurements l obtained that are readily computable.

As a consequence of the stochastic aspects of such games, the

discussion L restricted to linear-quadratic differential games
A

which are analyzed using function space techniques.

The solution to a linear-quadratic game with perfect information is

obtained without the a priori assumption of a saddle-point solution

and it is shown that the individual minimax and maximln solutions to

such a game result in a set of strategies that satisfy the saddle-

point condition, but with necessary and sufficient conditions that are

more stringent than previously obtained.

Following recent developments, the cocept of prior and delayed

commitment strategies are introduced an4 the solutions obtained for a

game where one player has perfect state information and the other

player receives noise corrupted mesasurements. A pursuit-evasion

example of wuch a gam& is developed and by solving it the numerical

differences between the prior and delayed commitment solutions for this

( e are obtained.

The concept of delayed commitment games is then extended to

differential games where both players have noise corrupted state

measurements and solutions are obtained that are readily computable,

thus playing to rest the closure problem of stochastic differential
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ABSTRACT

The development of readily computable strategies for differential

games with noise corrupted measurements has been hampered by the so

called closure problem of stochastic differential games. The solutions

required either an infinite dimensional dynamic system or the determin-

ation at each time t of the error in the opponent's state estimate.

In this dissertation, solutions to differential games with noise

corrupted measurements have been obtained that are readily computable.

As a consequence of the stochastic aspects of such games, the

discussion has been restricted to linear-quadratic differential games

which are analyzed using function space techniques.

The solution to a linear-quadratic game with perfect information is

obtained without the a priori assumption of a saddle-point solution

and it is shown that the indiiidual minimax and maximin solutions to

such a game result in a set of strategies that satisfy the saddle-

point condition, but with necessary and sufficient conditions that are

more stringent than previously obtained.

Following recent developments, the concept of prior and delayed

commitment strategies are introduced and the solutions obtained for a

game where one player has perfect state information and the other

player receives noise corrupted measurements. A pursuit-evasion

example of such a game is developed and by solving it the numerical

differences between the prior and delayed commitment solutions for this

game are obtained.

The concept of delayed commitment games is then extended to

differential games where both players have noise corrupted state

measurements and solutions are obtained that are readily computable,

thus playing to rest the closure problem of stochastic differential
games.
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CUAPTEE 1

ITODUCTION

The theory of Sames may be described as the mathematical theory

of decision-makinS by participants, or players, in a competitive

environment. In a typical problem each player has some control over

the outcome of a particular event, or Same, and the theory is con-

cerned with finding the optimal course of action, or strategy, taking

into account the possible actions of the opponents. Although some

game theoretic concepts can be traced over the past couple of centuries,

modern Same theory dates from 1944 with the publication of the nov

classical work, "Theory of Games and Economic Behavior," by von Neumann

and Morgenstern [ 1

In differential games the ideas of game theory are applied to

dynamic conflict situations which can be described by differential

equations (continuous time) or difference equations (discrete time).

The dynamic system is under control of intelligent adversaries each

seeking to optimize his own gain at the expense of that of his oppo-

nents, using all the available information to achieve his objective,

and having no a priori knowledge of what the opponents are going to do.

Differential gane theory was first defined and studied by Isaacs 12- 51

in 1954 at the land Corporation and it was only upon the publication

of his book, "Differential Games" (6) in 1965, that the interest in

the subject became widespread.

Fundamental to the analysis of a sme is the formulation of a

mathematical model, which includes the payoff, the allowable strategies



and the available information sets upon which the players uust base

their decisions. If the interest is on detail, Information and fine

ptructure, the extensive form of a Sae is often used; while if the

stress is on strategies and payoffs, the strategic or normal form of

a Sam is usually employed.

A fundamental tenet of game theory is the Normalization

Principle of von Neumann, which says that given a game in extensive

form it can always be reduced to an equivalent Same in normal form.

Although the number of possible strategies in the normal form becomes

rapidly enormous, the conceptual simplification makes it in practice

a uch simpler problem for computing optimal strategies. As a conse-

quence most of the existing results in game theory are for games in

normal form. Rowever, there is still a major concern whether this

approach is philosophically sound. Aumann and lischler 171 recently

re-examined the Normalization Principle and illustrate via a simple

example some of the pitfalls in the passage from the extensive to the

normal form of a gam. Their results have imediate and serious con-

sequenies in differential game with imperfect state information. In

effect, previously obtained results of games with imperfect information

are useful and reasonable only if the players are irrevocably cmit-

ted to a strategy determined at the beginning of the Sane (the prior

ceamitment strategy). This severely limits their applicability, not

to mention that, in general, these strategies can only be realized by

infinite dimensional state estimators [8) . This paper is therefore

concerned with determining the strategies (the delayed cmitment

strategies) for differv ial gam- with imperfect information where

2



the players are not irrevocably comittod to their prior oemitent

solution. The class of Same are restricted to linear time varying

differential games with noise corrupted measurements and a quadratic

payoff function. The allowable strategies are closed-loop, based at

each time t on all the available information up to that time and the

final time T is fixed.

Chapter 2 presents the various concepts of game theory and a

brief review of those aspects of modern optimal control theory that

are pertinent to the later chapters. The theoretical development

begins in Chapter 3, with a careful definition and analysis of a

linear-quadratic differential Same with perfect information.

Chapter .4 introduces the stochastic differential game and

illustrates the prior commitment and delayed commitment strategy via

a tutorial example.

The prior comitment solution obtained by Behn and Ho [9 ) and

Rhodes and Luenberger [10]to a linear-quadratic differential game

where the minimizing player has perfect measurements and the maximiz-

ing player has noise corrupted measurements of the state is presented

in Chapter 5. The delayed commitment solution to this problem is

then obtained and the results are compared with those of the prior

comitment solution.

To illustrate the results obtained in Chapter 5 we analyze a

pursuit-evasion example in Chapter 6 that also allows a finite

dimensional solution using the prior commitment formulation. The

solutions to both formulation have been obtained and their character-

istics compared.

3



The delayed coimmitment formulation is then extended, in Chapter

7, to the case where both players have noise corrupted measurements

*and finite dimensional solutions, which are readily computable, are

obtained for both players.

44



CH&TA" 2

GAME THEORETIC COHCEPTS AND MATHEATICAL BACKGROUND

As pointed out in the Introduction, the study of differential

games is the dynamical equivalent of the problems studied in classical

game theory. Although many of the analytical methods for differential

games are actually extensions of techniques developed in optimal con-

trol theory, the important concepts in differential games come mainly

from general game theory.

The fundamental concepts of game theory are introduced in this

chapter with a discussion of two basic game models. A brief review of

those aspects of modern optimal control theory relevant to the sequel

is then presented, and a general mathematical representation of a

differential game formulated. The chapter is concluded with a dis-

cussion of the solution concepts of differential games.

2. 1 GAME THEORETIC CONCEPTS

The success or failure of an analysis using game theory often

hinges upon the ability to adequately model a physical situation. The

way in which a game model is formulated depends upon our interests and

the type of analysis to be performed. The two basic descriptions of a

game of interest to us are:

1. the extensive form, and

2. the strategic or normal form.

The extensive form of a Sane can be illustrated by means of a

diagram known as the tame tree, shown in Figure 2.1 for a simple two-

S



person SEN. In this representation of a game, the choice of the first

L R L R

(6, -7) (0. 0) (0, -3) (6, -4)

Figure 2.1. The Extensive Form of a Game

player amounts to selecting one of the two branches emanating from the

point 1I" After player I has made his choice, the second player has

to choose a branch at one of the two locations marked ?2. In our

simple Same, after both players have selected a branch, the payoff is

given by the two numbers at the end of the branches. In order to

indicate that both players move simultaneously we enclose both of the

iodes at P2 by a curve which indicates an information set. If the

second player knows at the time he moves what the first player has

chosen, we would then draw a separate information set around each of

the nodes.

When engaged in a particular an, each player is faced with

the problem of how best to play the game in order to maximize or mini-

mize his expected payoff. A player's complete plan for playing a game

is called a strategy, of which there are several different types. A

art stratoav for player I is a rule for selecting a particular move



at each of his information sets. A mixed strate= for player i is a

probability distribution over the set of all pure strategies. A

behavioral strategy for player i consists of a collection of probability

distributions, one each over the set of possible choices at each of his

information sets. A game for which the su- of the payoff's at each

terminal node Is eual to zero to called a zero-sum game, all other

games are nonzero-sum. In 1912, Zermelo (see [11) demonstrated the

" existence of an optimal pure strategy for two-person zero-sum games

with perfect information, that is8 gmia in which all information sets

contain a single node. Kuhn [illextended this result to n-person

general-sum games with perfect information. Kuhn also showed the

existence of optimal behavioral strategies for games with perfect

recall. A game has perfect recall if each player is aware, at each of

his mows, of precisely what moves he picked prior to it, but may not

know all the choices made by the other players. In 1928, von Neumann

showed the existence of optimal mixed strategies for any two-person

zero-sum Same, which is the well-known ininmax or Fundamental Theorem

of Game Theory.

Another of the fundamental tenets of game theory is the Normal-

ization Princile of von Neumann, which says that given a Sn in

extensive form it can always be reduced to an equivalent Same in

normal form involving only strategies and payoffs. The above example

of a Same in extensive form reduces in its normal form to a 2 x 2

matrix game shown In Figure 2.2. In this form, the dynamic and infor-

mational aspects of the original problem have been suppressed into the

strategy which covers all contingencies of the players.

7



Player 2's Choice

1 2

Player 1 6, -7 0, 0

[I's Choice 2 0, -3 6, -

Figure 2.2. The Normal Form of 6 Gume

When a game is constrained by a system that evolves over time

(or some other parameter) it is called a dynamic ems. If the dynamic

system representation taken the form of a difference equation, the

game is known as a discrete differential or multistage sane. The

designation differential gas is reserved for a dynamic gme where the

dynamic system representation is in the form of a differential equation.

We will have more to say about the differential game representation

in Section 2.3. At this stage it should be noted that implied in the

formulation of a Same is the assumption that the players "agree" on

the structure of the model as well as what is Important to both players

as expressed by the payoff or payoff function.

In this paper we will be mainly concerned with two-person

differential gis with perfect, as well as with Imnerfect infomation.

They represent an extension of optimal control theory, in that the

optimal control problem can be considered as a one-sided game. That

is a game with only one control input driving a dynamical system in-

stead of two opposing controls as in two-person differential games.

In terms of the matrix gam of Figure 2.2, a one-player gi would

consist of simply a single raw or colunn. The development in this

paper will be from the optimal control system point of view and we

8



will therefore first discuss the general optimal control problem in

the following section.

*2.2 NIEW O OPTD4L CONTROL THEORY

In this section we will present a brief discussion of those

aspects of modern optimal control theory that are pertinent to our

discussion of differential gems.

We will first formulate a general deterministic optimal control

problem and discuss the basic methods of solution. We will then modify

this problem to a stochastic optimal control problem, after which atten-

tion is focussed on the linear-quadratic-Gaussian problem. For this

problem ve discuss the Certainty Equivalence Principle or Separation

Theorem, including the notions of controllability, observability and

optimal estimation.

In the general optimal control problem one wishes to determine

the p-component control vector u(t) that minimizes the given cost

functional.
T

J(t0 ,XoU) - B(x(C),T) + f (x(t),u(t),t)dt (2.1)

to

subject to the constraints

dx m f(x(t),u(t),t) ; X(to) - x °  (2.2)

The n-component vector x is the state vector and Equation (2.2) is

known as the dynamic syste eQuation. The n-vector function f, as

wall as the scalar functions B and F are assumed to be sufficiently

smooth in the sense that all the necessary partial derivatives exist.

In addition, there may be magnitude or inequality constraints on the

9
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state and control variables, as well as restrictions on the terminal

state. The terminal time T may be variable or fixed; here it to

#sumod fixed for simplicity.

The optimal control problem is then to find that control function

u(t) (if it exists) defined on the inera j 0 TJI that satisfies all

the problem constraints and is optimal in the sense that it simultan-

eously minimizes the cost function. In other words, we wish to find

the allowable control function u*(.), such that for any control u(.)

belonging to the allowable control function met U, there holds for all

t a [t 0 .TJ

J(t 0'X 0'u-) S.J(t3Ox 0 'u) (2.3)

sasically, four methods of approach are available to solve the optimal

control problem; they are,

1. The classical calculus of variations approach, which leads

to the Zuler-Lagrange equations as the necessary conditions

for the control to be optimal.

2. The Maximum Principle of Pontrsin approach, which pro-

vides the necessary conditions for optimality. It is

usually the most direct method for problems involving

magnitude constraints.

3. The dynamic Poramina approach, which leads to the

Hamilton-Jacobi equations. Although the Hamilton-Jacobi

equation cannot be easily solved In general, ua(t) is

determfied as a function of x(t), or in other words, we

find a feedback control law which is highly desirable.

10



4. The functional analsia approach. Its appeal stems primar-

ily from its geometric character and is most useful for

problems formulated on a fixed time interval.

- In this paper we Vill almost exclusively use the functional

analysis approach to obtain the solution to optimal control and differ-

ential game problems.

Frequently, it is required to obtain on-line feedback or closed

loop control of the dynamic system; i.e., we seek a solution of the

form u(t) - u(x(t),t). However, restricting the allowable controls to

belong to the set U : u(t) - u(x(t),t) greatly complicates the deter-

mination of a solution. In fact, of the four basic approaches listed

above, only the dynamic programing approach directly provides a

closed loop solution. Otherwise, the dependence of the control u(t)

on x(t) can be explicitly identified only for a linear dynamic system

with a quadratic cost functional.

If the system dynamics (Equation (2.2)) are perturbed by ran-

dom disturbances, and/or if the initial conditions are random, and/or

if the only available information about the state z(t) is available

through noise corrupted measurements of the state variables, the

deterministic optimal control problem becomes a stochastic optimal

control problem. in this case, the criterion of optimality needs to

be modified to that of minimizing the expected value of the cost

functional.

Thus, by postulating that the only available Information about

. the state of the system can be obtained by measurements of the form

z(t) , h(x(t),w(t),t) (2.4)

. .. .11

, .. -, .r o-..-o o.. -- . .. . . . . - -• -. .



where the output vector a(t) is of dimenuion m~n, the function h(-,-)

is sufficiently smooth In each argent and w(t) to a random noise

process, It follows that we are dealing with a stochastic control pro-

blem. The conversion to a stochastic optimal control problem to com-
plated by modifying the optimality criterion to that of minimizing the

expected value of the cost functional; i.e.,

.7(u) - 9 (B(z(T).T) + I 1(x(t)1u(t),t)dtj (2.5)
0

Furthermore, it in necessary to seek a closed-loop solution, thus the

allowable controls are of the form

u(t) -u(Z(t),t). (2.6)

where

Z(t) - I(z(B).B) ; seto.t)l (2.7)

i.e., the control u at time t depends on the past and present

values of the measurment history Z(t).

The class of problems for which a closed-form analytical solu-

tion to the stochastic optimal control problem has been found is the

case of a linear system, a quadratic cost functional and white zero-

mean Gaussian noise additively corrupting the measurements of the

system output. For this special case, the optimal closed-loop solution

is given by the Important Ce*rtgint~r kuvaInCe FrIncisle or Seoaration

Theorem.

To review the Separation Theorem, we will consider the linear

continuous time system described by the vector differential equation

22



dx . t - 1(t)z(t) - G(t)u(t) ; x(to) - z' (2.8):.: d t

to which are available measurements of the form

s(t) - I(t)x(t) +wt) (2.9)

where x(t) is an n-dimensional state vector, u(t) is a p-dimensional

control vector, z(t) is the output vector of dimension m<_n and the

matrices F(t), G(t) and H(t) have the appropriate dimension.

The initisi state X(to)is assumed a Gaussian random variable

with mean Zj x(t )jInx and coy J x(t0)x(t0)J -i P0 . The additive

noise w(t) is assumed white and Gaussian with zero man, caw w(t).w(r)J

- W(t)8 (t -r) and independent of the initial condition X(to).

Consider also the quadratic cost functional

T

J(u) - 1/2 I xTCr)z(T) + J T(t)(t)dt (2.10)

to

where the final time T is fixed and finite, and the superscript T

denotes transposition.

Let the set U of allowable control functions be

VU W : ~) u(ZO), (2.11)

where

SZ~t W (z(),) 0 s(to 't) ,(2.12)

then the objective is to find that u°(t)( U such that

13



3 J(ut)).:S zIJ(U(t))I (2.13)

for a1l t(c (t0 Tf

The solution to this problem may be stated in three parts;

1. The optimal closed-loop solution to the corresponding

p deterministic optimal control problem; i.e., for x(t)
0

known exactly, 1(t) -I the identity matrix and v(t) -0,

my be written as

TUO(t) C (t)S(t)x(t) (2.14)

where the a x n symmetric matrix S(t) my be precomputed

from the ustrix Riccati equation.

9 S(t)7(t) -I T(t)S(t) + S(t)G(t)GF(t)S(t) (2.15)

with the terminal condition

8 (T) 1 (2.16)

If, In addition, (7,G) constitute@ a controllable pair;

i.e., if

T

t
0

where 9(t't )is the system state transition matrix which
0

must satisfy the relation

14



i0

-'.- F(t) *(tt O)

at
(2.18)

*(to,to) " I t

then S(t) exists and is bounded for all t I T.

2. The optimal closed loop solution to the stochastic optimal

control problem is

u(t) G x (2.19)

where

~(t) z x f(t)I z(t)I (2.20)

with Z(t) given by Equation (2.7), that Is, x(t) is the

expected value of x(t) given the measurements z(t) up to

time t. The uatrix G1 (t)S(t) is the same as that of

S equation (2.14) and is unchanged by the conversion of the

deterministic optimal control problem to the stochastic

optimal control problem.

3. The best estimate O(t) of the state x(t) given the measure-

ments Z(t) is given by

MAW -) )- G(t)u(t) + P(t)HT(t)W'(t)

[, it)- H~) () ;x(to (2.21)

where the a x a symetric matrix satisfies the matrix

Riceati equationi - e(t)P(t) + P(t)P(t - (t)JIT(t)W'(t)I(t)Pot

P(to) P 1o (2.22)

r15
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If, in addition, (VR) consitutes an observable pair;

i.e., if

T

f - (tt)HT t 3)H t) (t,to)dt >0 (2.23)

t 0

It T
then P(t) exists and is bounded for all te to.T

The two parts (1) and (2) Illustrate the Certainty Equivalence

Principle, which emphasizes the fact that, for linear systems with

quadratic cost functions and subjected to additive white Gaussian

noise inputs, the optimal feedback solution treats the conditional

Amean-state estimate, x(t), as the true state. The Separation Theorem

expresses the fact that this problem can be solved via two separate

problems; optimal estimation and control.

2.3 DIFFERENTIAL GAME FORMULATION

A two person differential game differs from the optimal control

problem in that another set of control variables is available for

manipulation. Each set of control-variables, uI(t) and u2 (t), can be

thought of as being under control of an intellisent player or con-

*" troller, and each player thus has control over only Eot of the

relevant variables that decide the outcome of the Same. The players

are opponents, and if the objective of the one controlling uW(t) is

to minimize the cost or payoff of the Same, the objective of the one

controlling u2(t) is to maximize it.

In general, the following situation arises for a two-person

zero-sum game: For I - 1, 2 player I wishes to select his pl compo-

nent control vector u (t) that optimises

i
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J(toXo;U0,u 2 ) m B(z(T),T) + f 7(x(t),ul(t),u 2 (t),t)dt (2.24)

to

subject to the constraints

: dx ~-;xt-
d- f(x(t),u (t),u 2 (t),t) ((t = (2.25)

and

iauEU1  ; u2 CU2  (2.26)

As for the optimal control problem there may be inequality constraints

on the state and control variables. To ensure termination of the game,

the terminal time T Is liven explicitly in the above gem.

The control variables u1 and u2 are called the strategies of

player I and player 2 respectively, and are restricted to certain sets

of admissible strategies U1 and U2, which depend, in general, on the

specific problem to be solved. Equations (2.24) through (2.26) can be

thought of as defining the rules of the game. The progress of the

Same is determined by the n-first order differential equations(2.25).

Play starts at time to in the state zo and terminates at time t - T.

The game is zero-sum because there is a single payoff and the game is

called strictly cogMtitive. Furthermore, the gme is one of perfect

information since both players know the state *(t) at any tim

t ((to,T 1. In the case of a two-person nonzero-sum gamt we my

encounter a payoff function such as

17



T -(2.27)

j 1 (t 0 x ; uilu 2) " 31 (x(T),T) + f Fi(x(t),ul(t),u 2 (t),t)dt
t

0

for - 1, 2.

Since the players are assumed to have several strategies avail-

able for play, the central problem of Same theory is the determination

of which one to play.

2.4 SOLUTION MCO TS

In optimal control theory, the solutions are the allowable

control functions that optimize the criterion function and there is

no doubt about the meaning of a correct solution. In game theory,

however, the presence of the opposing control introduces a dramatic

new order of complication not usually found in the one-sided optimal

*control problem. When each player determines his optimal strategy,

he must also take into account his opponent's actions toward the

opposite end, the opponent's similar wariness of the other player's

actions, and so forth. The basic difficulties are thus related to

the available information sets and the rationales used by each player.

In nonzero-sum games one can be faced with a great variety of relevant

solution concepts involving coalitions, threats, enforceability of

agreements, bargaining, etc. In this paper we will explore two

solution concepts associated with nonzero-sum games, namely, Nash

N equilibrium and individual minimax solutions.. In two-person zero-sum

differential games, the problem of multiple solution concepts does

not arise.
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2.4.1 Eguilibrium Solutions

If game theory is to recommend any specific pair of strategies

for a two-person Same, then each strategy must be the beat possible

against the other strategy in the pair; i.e., the pair must be an

equilibrium point: Otherwise, a knowledgeable player will know what

the theory recommend& for the other player, and so will want to select

a strategy that is better for him.

If we identify the players by

Player 1; minimizing player with control

Player 2; maximizing player with control u2

then a strategy pair (u1°,U2 ) is in equilibrium if

J (Ul u2*) <_ 3(ul,u2")U C lU 1  (2.26)

and

J2 (u 1 ,u2) J2 (u1ou 2°) 4 u2 CU 2  (2.29)

In other words, the strategies are in equilibrium if no player has any

positive reason for changing his strategy assuming that the other

player is not going to change his strategy. in game theory such an

equilibrium solution is known as a Nash equilibrium solution. Thus,

if a player knows that the other player is cmmitted to his equilibrium

strategy, then he has reason to play the strategy which will give such

an equilibrium pair and the Same is stable in the sense that no player

can unilaterally improve his payoff by changing his strategy.

For two-person zero-sum games, the Nash equilibrium solution

leads to a saddle eoint on the cost surface in the control space and

19



J(ul*u 2 ) S J(u 1 °'u 2
°) i J(u u2 ) (2.30)

In this case equilibrium pairs are both interchangeable and equivalent,

in the sense that, if (u Iu ) and (u1 ,u2 ) are equilibrium pairs,

then so are (u ,u2*) and (u1.u) and moreover

U J1",u2")) (2.31)
J(ul.u) - J(u1*,u2*) - J(ul.u 2 ) 2 ~ 1 u)(.1

This well-known result of equivalence and interchangeability [12 Ifor

zero-sum games with a saddle-point solution makes the question of

uniqueness of the admissible strategies irrelevant. For, if two

saddle-points exist, their values are equivalent, and the strategies

which give those saddle-points could be played interchangeably without

changing the value of the criterion.

Unfortunately, not every game has equilibrium strategy pairs.

In general, if a game has no equilibrium strategy pairs, we usually

see the players trying to outguess each other, keeping their strategies

secret. This suggests, and is indeed true, that for finite games

with complete information, equilibrium strategies do exist.

2.4.2 Ninimax and Kaxiuin Solutions

Most practical conflict situations are not games of perfect

information since Ignorance of an opponent's ultimate choice of con-

trol is generally an essential elment of a conflict situation. In

that case each player must approach the design of his own control

prepared to limit the adverse cost resulting from his opponent's

20



ultimate choice of control. This means that the minimizing player,

player 1, must select u1 so as to minimize the mauimum possible cost,

regardless of whether the maximizing player, player 2, ultimately

selects u2 such as to yield this cost.

Hence, from player I's point of view, if he selects an arbitrary

control u , then, regardless of the choice of player 2, he is assured

of the cost being at most

3l(Ulu 2 ") -max J3(u 1 ,u 2 ) (2.32)
u2U2

Since player I is the minimizing player, he will select u such that

this choice minimizes the maximum cost, that is,

SI- (u1°iu2 , min fmax J1 (ul,u2 ) (2.33)

Thus, the minimax solution is the control u Player I does not care

what strategy his opponent ultimately selects, he is that much ahead

if his opponent selects any strategy other than u2 , since the result-

ing cost would be less than, or at best, equal to J1(u I*u20

1 (u 1 ,u 2 ) 1 Jl(u,u 2 ") (2.34)

Hance, JI(uI°,u 2 ) is the loss ceiling or the security level for

player 1.

From the point of view of player 2, if he selects an arbitrary

control u2, then regardless of the control of player 1, he ts asoured

of the cost being at least

21



2(ul ,u2) - min J2 (ul,u2) (2.35)
u 1

and since he is the maximizing player, he viii select u2 such that

this choice maximizes the miniumm cost; i.e.,

32 (uU 2*) max min J2 (Ulu 2) (2.36)
u2 ul

Thus, the maximin solution is the control u2 . Player 2 also does

not care what strategy his opponent ultimately selects, since if his
,3 *

opponent selects any strategy other than uI , the resulting payoff to

player 2, the maximizing player, will be greater than J2 (ul ,u2 ):

S* * (237

J2 (Ul ,u2 ) < J2 (ul,u2 )(2.37)

Hence, J2 (ul*,U2*) is the Min floor or security level for player 2.

The controls u10 and u2 , derived on the basis of no a priori

knowledge of each opponent's ultimate choice, are again stable solu-

tions to the game. Assume, for example, that during a differential

Same, player 2 has calculated his security level by which he deter-

mined the control set I ul (t).u 2 ()I and subsequently found out

that player I uses the strategy ul7(t). Then, player 2 will be able

to find another strategy u2 '(t) which will give a payoff greater

than J2 (ul*,u2*). However, as soon as player 2 employs a strategy

other than u2 (t), there exists a strategy u1 ' (t) that together with

22



ul(t) gives a payoff such that J2 , (uu Henc if

player 1 decides to secretly switch to u (t). player 2 has to accept

.a smaller payoff than if he had stayed with u2 (t) in the first place.

Thus, unless player 2 has reason to believe that player I is irrevoca

bly commited to a strategy other than ul*(t), there is no reason at

all to play a strategy other than u2 (t).

If a player reveals his strategy to his opponent the beat he

,. can hope for is the loss ceiling or the gain floor depending on whether

the revealing player is player I or 2. For a two-person zero-sum game
* u*

if it happens that u -u and u Uy, the minimax and maximin

solutions have located the familiar saddle point solution and there is

no point to secrecy.

2.4.3 Open-Loop Versus Closed-Loop Control

The fact that a player plays a maximin or a minimax strategy

does not imply that he cannot take advantage of any non-optimal play

of his opponent. In fact, the interim action of his opponent during

the actual play of a differential game can not be ignored, and what is

required are controls that depend explicitly on the state x(t) of the

game.

The indifference between open-loop and closed-loop control, as

in the deterministic one-sided control problem, has its counterpart in

differential games only in the determination of a priori strategies,

in which case, ui(t) - ul(x(to),t). During the actual play of the

game it is mandatory that closed-loop control is used and ui(t) -

ui(x(t),t). Starr 1131 has shown that for nonzero-sum differential

games the open- and closed-loop equilibrium formulations give entirely
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CHAPTU 3

THE LINEAR-QUADRATIC PRFECT INFORMATION GAM

In this chapter we develop the solution to a differential Same

with perfect state-information which is of fundamental importance to

the delayed comitment strategy solutions of stochastic differential

games discussed in later chapters.

The currently available control literature shows that a closed-

loop solution for a stochastic optimal control problem seams to be

available in closed-form only in the special case of a linear system,

a quadratic cost functional and white Gaussian noise additively cor-

rupting the system. It therefore seems unlikely that a closed-form

solution for a stochastic differential same problem will be available

unless we assume the same or more stringent restrictions for such a

game problem. Since stochastic differential games will become our

main interest, we will restrict our discussion in this chapter to a

linear system with a quadratic payoff functional. Contrary to pre-

viously obtained results 1141 , 1151 , however, our solution will not

be conditioned by the a priori assumption of a saddle point solution.

The linear-quadratic differential Same representation used in

this paper is formulated and the solution is obtained using function

space methods. Thus, the analysis is made in Hilbert space and

follows the method of approach of Porter in 1161 . It is then shown

that the optimal strategies can be obtained from a matrix Riccati

equation and can be computed prior to the actual Same.
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3.1 LIKUA-CARATIC AM 1ORMUfTICO

Consider the linear continuous-time system governed by the

vector differential equation
" (3.1)

VW 11 22'x at a '(tu
+, '() - -' l x () - 'tu (t) + x2t u~ ) '(t o)  .,

where the n vector x' (t) is the system state; the control vectors uW(t)

end u'(t) are of dimension p and q, respectively; and the matrices

i F'(t), Gi(t) and G2(t) have the appropriate dimensions. Consider also

a quadratic cost (or payoff) functional

T

J(uJu 2 ) - 112 xT)Q3x'(T) + f uT t)Q tu(t)dt

to
T

2-J- u, (t)Q 2 (t)u2 (t)dt (3.2)

to

vhere the matrices QI(t), Q2 (t) and are symmetric positive definite;

and the final time T is fixed and finite.

The payoff functional can be written more efficiently by use of

the following transformations. Since Ql(t), Q2 (t) and Q3 are

positive definite and symetric, they ay be factored as

Qi Qi qi P i , 2,3 (3.3)

Then by the transformations
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I I
x ~1/2 Xt

(t - /x2(t)u()

U ) Q;1/2 (t)u 2 (t)

The system equation becomes

1/2, -1/2 1/2-12()(t

F- ' (t 3 z(t-iC

+ MG2 o(t)Q"2 t (t M Q/ z -.x (3.5)

if we now define the new matrices

F(t) 0 1I/27(tQ -1/2Qi F (t) Q3" /

0 1(t A1/2 , -1/2(3):"- , (t) e QJi a,(t) 91/ (t:) (3.6)

- .(t) - Qi G1'(t)Q , (t)

the system equation and payoff functional are respectively

I :: -d= .x
- - F(t)x(t) - GW(t)u (t) + C2 (t)u 2 (t); z(t)-

T (3.8)

J(ulu 2) -12 xT(T3x(T) f, u IT (tu (t)u 2 (t) dt

27
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In view of the possibility of making the above transformations, ve viii

consider Equation (3.7) as the defining system equation and Equation

(3.8) as the payoff functional.

The above formulation involves a single dynamic system instead

of the two separate systems of the pursuit-evasion problem as in 1141

However, this single system includes the pursuit-evasion problem as a

special case, since the individual state vectors of the pursuit-evasion

problem can be combined into a single state vector and the two oppon-

ents considered to constitute a single system.

Player 1, the minimizing player, attempts to minimize the payoff

Tfunctional or criterion; i.e., he minimizes the term x (T)x(T) in

Equation (3.8) as veil as his own expended energy, while maximizing the

energy expended by player 2. Player 2, the maximizing player, attempts

to maximize the same criterion. Thus, the game is zero-sum and since

each player is assumed to have perfect knowledge of the system state

it is more accurately a zero-sum game with perfect information.

The class of admissible strategies are defined as those U1 and

U2 which give rise to the controls

U1  : u1 - u (t,x(t))

(3.9)

U2  : u2 - u2 (tx(t))

that are bounded and that are continuous almost everywhere for tot e T.

it is well known that, for arbitrary t - t o , x o , uI(t) and u2 (t),

the solution to Equation (3.7) may be written as

28
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t

z(t) -#(tto)x(t 0 ) - f * (t,-r)Gl(T)u (T)dT

to

t
."+ f 9(t,v)G2 (')u2 (v)dT• (3. 10)

U. to

where *(t,t) is the state transition mstrix, i.e. it satisfies the

relation

o"~ 0 ( t, t

St 0(3.11)

# ( t) ( 't 0)

As mentioned previously we will analyze the above problem

using functional analysis techniques, although any other of the four

basic methods of approach mentioned in Section 2.2 could have been

used.

To reformulate the differential Sae in a suitable Hilbert

space consider the controls u1 (.) and u2 (.) to be elements of the

Hbiert spaces H - L2PjtoT ] and H - L2q ItoTJ respectively, where

the space 1 raPT is the space of r - vector functions which are

* defined and (Lebesgue- ) square Integrable over the interval (t 0oTj

The inner product on this space is defined as

29
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T

-, I I f T(t)y(t)dt (3.12)

N to

and the norm is defined in terms of the inner product as

T

Ryll 2 -<Y. - f YT(t)y(t)dt (3.13)

to

Hence the two integrals in Equation (3.10) may be considered as linear

operations on uI and u2 respectively, and we can represent the dynamic

system (3.7) in terms of linear transformations on suitable Hilbert

spaces as

x(t) - *(t)x °  (TIo1 ) (t) + (T2u 2 ) (t) (3.14)

where the linear operator T1  : L2PjtoTI - n is defined by

t

(T u1)(t) - f (tr )r()ui(,r)d (3.15)

to

with a similar definition for T2 and En is the n-dimensional Euclidean
p2

space. The terminal state can then be written as

X(T) T) - (Tu 1 )T) + C2U2)(T) (3.16)

Dropping the argument T whenever t - T, the first term of the payoff

functional (3.8) may then be written as

xT(T)z(T) ,<9x0 - Tlu, + T2u2 ,*z - Tu I + T2 u2 > (3.17)
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The other terms of the payoff functional may similarly be expressed

as inner products and we can write the payoff fnctional, as

J (UIu 2) 1/2 (< . Tu + T iu2 , x. Tjul + T 2J2 >

+- u.u2 > (3.18)

I.
which now includes the dynamic system since it has been used to

develop this equation.

3.2 I(LThAX SOLUffIO

For the minimax solution we have to find the u2 *(t) that

maximizes (3.18) for arbitrary ul(t) and hen that ul*(t) that

minimizes this maxsmm cost.

Forming the functional derivative of J(u ,u2 1 with respect to

u and setting this derivative equal to zero, we obtain

IiJ(u 1 ,u2 ) * *

au 2  " 2 2 9Xo T2 1U1  2 T2 T2u2  0 (3.20)

(where the asterisk denotes the adjoint operatod or

"2 1 Tlul + T2T (3.19)u2 " 2 92 22u

The above equation requires u2 to be in the range of T 2  thus ve

may write

U2 - T2 X )2 (3.21)
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Making this change of variable results in

T A 22 2 (3.22)2 2 T2 #x o  
2 1U 1  22 T2 '

which will hold whenever

•2 4 X 0  - T U 1  + T2T2  k 2 (3 .23)

or

2  (I- TT*)I (x ° - TU) (3.24)

Thus, whenever the indicated inverse exists, the candidate extremal

control u2*

u2  T2  (1 T2T 2  ) ( x - T lu) (3.25)

With T : L2 [t 0 TJ -.En defined as in Equation (3.15) by

t

(Tu) (t) - f *(t,)G(T)u(7-)d T (3.26)

to

the inner product Tu in En vith an arbitrary vector C EEn i

t

<- f#t (t)G ()u () dT

t.o'

t
0

(Coat '4)
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-f IG()(,) ~~~d
to

"<(T C,u> (3.27)

Hence the adjoint operators T and T are Identified by the

equations

(T*C)(t) - 0 1 T(t) #T(T.) C1  (3.28)

and

(T*)(t) - 2 T(t) T(Tt)C 2  (3.29)

Thus, Equation (3.25) can be written as

u 2 (t) - 2T(t)uT Mt) I- f *rt)G 2 (t)G 2 T(t) 0T,(Tt)d jI

t~t

SFor u2*(t) to be indeed locally mmxbnizingl 0 imtb

7- 2 2

satisfied. Differentiating Equation (3.19) with respect to u 2 gives

-1+T 2 T2 <0 (3.31)
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thus requiring that

T

* i-f *(t,r)c 2 ( ar)ic2 7)(t.,r)dv >0. to-_t _ (3.32)

to

In addition, no conjugate points may exist on the extremal path, vhich

S is equivalent to riquiring that (I - T2T2) > 0

or

I f #(t,r)G2 (r)G 2 ()T(t,r)dr > 0 t0 <t<T (3.33)

to

which assures the existence of the Inverse in Equation (3.30) so u2 *(t)

exists over the entire interval itoT 1. If Equation (3.33) is not

satisfied; i.e., if there exists a time t5 < T for which the matrix

'1 1
I f(t,)G 2 (r)G 2 T(vr) # (t ,r) d j (3.34)

becomes singular, then the control u2 (t) is no longer maximizing for

t >t

Assuming Equation (3.32) and thus Equation (3.33) to hold, the

maximizing control u2 e(t) for arbitrary u (t) is given by Equation

(3.25) or

u 2 "  T2*(I -T 2 T2 ) I (*x 0 - 'lU)

T2 *D2 (9x ° - T0UT ) (3.35)
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here

2  2 
(3.36)a

Subtitutig u e2 into S.18) gives the following payoff functional

"3J(u)  0 U1x°  + T* D2(Og - TlUl)..x - TlU I

+ T27*2 ( o T2# x)><U,>.<T*D 
( A> , TU) 2,D

-,T

i (" XO "TlUl) >
i ..i .( 3 .3 7 )

: " mObieh simplifies aftcer sawe work to
oa(Ul) . I e, -T.,.0 "T U -OU

<# D2 # x a I Ll) >+<uU (3.38)

oad It is required t:o dst&tmIns the ul It that stnimiseg this payoff.

Fozting the functional derivative of J(u1) with respect to U1and settins this derivative equal to zero gives

*J(u1 )

ou - U T D2 z o " 3 0 (.39)

or

uI  - T1 D2T uI + T1ID 2 #x0  (3.40)

but this equation requires U to be in the rang. of ?j , thus ay

write

.u - 1AI 0.41)
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and after making this change of variables we obtain

T "T1 D2T T1 l + T1 D2 Oz o  (3.42)

which viii hold whenever

A " D2TIT* AI + D)2 O x  (3.43)

or

A 1 11+ (1 T2T2 *)'TITI*J'I - T2T2*j .I xo

i T T + T1 *J lx. (3.4)

Thus, the minimax control for player I is

u - Ti* I - T1TT - T2T2 j "l

T1 D x0  (3.45)

where

D X( + TT T2T2" T l (3.46)

The indicated Inverse exists if (I - T2 T2 *) > 0 as required for u2 (t).

Substituting u1  into Equation (3.35) gives as the corresponding

optimal control for player 2.

u0 . ~ D(1 o.TT*Do

2 T2 D02 (* x0  TT 1

-T2 D O (3.47)
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Evaluation of (3.18), using (3.45) and (3.47) yields the mintmax

cost from time to to completion at time T asI0

I~~. 2 OY 2 <* 1 O. jI + T IT I T2 T 2*[l Oz0>(.8

i. ith Ti, T2 and T1*, T2* defined by equations (3.15) and (3.28),

(3.29) respectively, the min.max solution is from equations (3.45) and

(3.47).

u "(t)t)9T(T.t) [ + CT O(T.)G(G 1
T() #T (TI,)d

to

f.- (,T. G) 2 ()G2 T (T), T (T. lr)d 1*(T,t 0o)x(to) (3.49)

[it o 71

and

u 20(t) T2 (t) T(,t) I + f O(T~r)G,(T)GIT(T) T )dl
S to

1 0rT *
f #(T,-1)G 2 (r)C2

T (7)T(T,)d j(Tto)x(to) (3.50)

to
Pa

The mintmax cost to complete the process from the arbitrary

time t i from equation (3.48)

UI:T s) eTTto) + f(Tr)G(I")GI (0 (Tvr)dr
:;. to

(Cont'd)
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T

f J (T.), (T)G,2T(r) #T (.M)djl* .. to) (t)J (3.51)

The necessary and sufficient condition for the existence of

the minimax solution so from Equation (3.34)

T

. -J(,C 2 ( (T,r)d7 O, t < T (3.52)

:2 to

3.3 MAXDU SOLUTIOl

For the maximin solution it is required to find the u1 (t)

that minimizes (3.17) for arbitrary u (t) and then that u*(t) that

maMximizes this Sinimm coot.

Forming the functional derivative of J(u1 'u2), i.e., Equation

(3.18), with respect to u and setting this derivative equal to zero

we obtain
(3.53)

* u2  1 + T * T Tu 2

or

u - T1 *x ° - TiuI + Tj*T2u2  (3.54)

This equation requires uL to be In the range of T1*. thus we way

write

T AIe I (3.55)
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Making this change of.veriable results in

T m *x" -T T*T A + T1 T 2 a2 . (3.56)

which will hold whenever

A' 0 ° - TIT1 I 1  T2 u2  (3.57)

or

Al - (I 4 T T I X ( 0x0 + T2u2) (3.58)

The indicated Inverte always exists for 0 St<T, because the term

added to I is at least positive smindefinits. Thus, there are no

conjugate point difficulties associated with the maimin solution.

W-rthermore, O - I T T1 > 0, thus the control u1 i

globally minimizimS and is given by

u T ?1 ( T 1  (0 ° + T2 u2 ) (3.59)

or

U * D1 (x ° + T u2) (3.60)

Whare

91- (1 T T "  (3.61)

39



Substituting u2  Into (3.18) gives as payoff functional

j(u2) 2 1 -19T 1% T (9x* + T2u2 1 + T2u2, *x o - TIT 1 D1

( x +T 2u2 ) + T2 u2> I 1 0), T* DI

(x + T2 u2 )> <u 2 'u2 >j (3.62)

which reduces after some algebra to

(u2)-6 < zxo + T2u2,Dl(xo + T2u2)> <u 2 ,u2 > (3.63)

and it is required to determine that u2  which maximizes this payoff.

Proceeding as before,

- u2 + 2 D1(9x + T2u2) . 0 (3.64)

or

u2 - T2 DIT 2u2 + T2 *DIx 0  (3.65)

This equation requires u2 to be in the range of T2*, thus we may

write

u2 " T2r A 2  (3.66)

and on making this change of variable, we have

T2 T2  2  2T2 %2 + T2 D1 9xo (3.67)
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which will hold whenever

U o2 D 1 2T272 X2 + D19% 0  (3.68)
+or

X I (~mI I+ T IT*)l'T2T2*1-(1 + TIT,*)-' x0 .

.f -iz T - T2T2TT,* x. (3.69)

Hence the maximin control for player 2 is

--
u r- 2I1+ TT,*T 2T2*i *#xo.

? TD~x0  (3.70)

Substituting u2 Into Equation (3.59) gives

u" - Ti*1 Ox 0 + Ti DIT 2T2 D x0

-T *Dex (3.71)

Evaluation of (3.17), using (3.70) and (3.71) yields the

-naxiin cost from time to to completion at time T as,

J'u" ) * l<*Xo II. lOx- 1 2TT*j lx~> (3.72)
S(ul'u 2 ) 2 221 0

With T. T2 and Tl** T2* defined by Equations (3.15) and (3.28), (3.29)

respectively, the slain solution is from equations (3.70) and (3.71)
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u*(t) - WT(t).T(Tot) I + f *(T..)GI 1,IGIT(y) 9T(T, r)dT
to0

T

-/ e(~q')G (qG(r) *TT.Ill "*(T,to)x o  (3.73)

f (T(T.dr] r

T T

T "

. / Cr,v)G 2 (T) 2
T ( ) #T ,T.ir)dT] 1 To (3.74)

to

The maximin cost to complete the process frm the arbitrary

time to is from Equation (3.72).

00

TT

T T T T

J(u Tu (o) (To) - J / (Tv)GI()G1T(r)* (T .)d "

to

T(T.,r)2 (,r) 2T (r) t (,T,)d-r I # (Tt W (3.75)

I'm while t~he necessary and sufficient condition for the existence of the

[.2!. --itn solution to from Elquation (3.69)

I to to
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3.4 DISCUSSION

Comparison of the minimax solution (Squations (3.49) through

(3.52) with the sauximin solution (Equations (3.73) through (3.76)),hovs

that the solutions are identical. Bance, we have obtained the saddle

point solution to the two-person zero-sum Sam., I.e.*

J(ulOU2) !5 J(ul,u2 ) e4 J(ul,U2) (3.77)

If we define the symmetric matrices N(Tt 0 ), MI(Tt o ) and

'2(T,t o) as

W(T'to0) - + M]1(T,t0 ) - ) 2 (,t o )

T
M(Tto) f f (T r)G2(T)G2T (r) T(T,r)dr (3.78)

to

x'Cr T0 1) - Cr, 2 (T")G2TQ)9T1" ) d

,i- .2 (r~~ ~to

we can write the optimal solutions as

U-*(t) G IT T 1 (to)x (3.79)

Su2 0(t) -G2 T(t) #T(T,t)Ml (T,to) ocf(,to)x 0  (3.80)

UI  and it is obvious that the optimal controls are proportional to

' (T,to)x ° which is the teuinal miss if both controllers remain

inactive and the system is alloyed to run free. The time varying

matrices reflect tb~o control capabilities of both players.
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1rM optIMal control theory (Section 2.2)o we know that the

necessary and sufficient condition for the system to be controllable

.0 T by controller 1 with u2 (uO is
T

Sl(To f (Tt)cG(t)Gl (t) 97(T,t)dt 0 (3.81)

tU

for all t ini It Ti while the necessary and sufficient condition for

the system to be controllable on t0 T by controller 2 with

u ')  0 is

T
.T T()"2 (.'o f #(T.t)G 2(t)G2 (t)# (T,t)dt > 0 (3.82)
t,
0

and we can define Ml(Tto) and M2 (tto) as the reduced controllability

matrices of player I and player 2 respectively.

The conditions for the existence of M1 (Tt) obtained in the

maximin solution provides additional insight Into the problem if we

consider the limiting case of weishiag the importance of terminal

.iss against control effort. In this case the payoff functional Is

written as

T (3.83)

J(u19 2  2 Tu T Wu (t) u T u )dt~1'2 2 ()x(T t 2 j
toF where the scalar a permits the required weighting, end the resulting

-(T to) is then

0a
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In the limiting case, i.e. -2 i n the sense that

S if x() -0

2 (X. MXC) (3.85)

if x(T) 0

the existence of X(Tt) is guaranteed if
0

Kr (Tto) * Ml,to) . (Tto) > 0 (3.86)

K. r(Tt o ) is known as the relative controllability matrix 114 ] the fact

that it is positive definite indicates that the minimizing player,

player lIs 1more controllable" than the maximizing player, player 2.

The initial time t is completely arbitrary, vhile the assump-

tion of perfect inforation guarantees that x(t) is available for any

t. Bence the open-loop controls can be applied continuously and

instantaneously to yield optimal feedback control lays by replacing

to by t.

If we define

S (t) jT(T.t) I+ f TTr)G()GT('r)9Tr)dT

tt

f # @(T,r) G2(.r) GT(,r) •T(T,,)  -I r(Tt) (3.87)

then we can write the optimal feedback controls for the linear-

quadratic two-person differential game an
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uI (t) - t (t)z(t)0.8

" ~u 2" t) G G2T)Stz) (3.69)

S. and the optimal cost to complete the gams from the arbitrary time t is

IT
J(u l ,u 2 ) 2 x (t)S(t)x(t) (3.90)

S" vhile the necessary and sufficient condition for existence of the

solution ts from the maximizing step of the minimax solution

T

I- fC (',T)G2 (r)G 2 T(r)pT(T.,)d > 0; t <, T (3.91)

t

- This necessary and sufficient condition is more stringent than

that of Ho, Bryson and laron [141 and Rhodes and Luenberger 1101 who

claim

T

I J(T, -) 1 G 'l )*T(T.-r)dr

t

T
- f#(T,,)CG2 (' ()G(T. 7))d1>O; t<_f T (3.92)

t

as the necessary and .sufficient solution. The difference occurs

because their mathematics ts conditioned by the a priori assumption of

a saddle point solution.

With 5(t) defined as in Equation (3.87) we can determine the



controls U1 (t) and u2 (t) from the matrix Riccati equation, developed

below. Takitg the derivative of 3(t) we obtain

(t) T (T' t)D(t) (Tt) + #T(T~t) D (t) (T.t)

+ Tt)D(t) 8 ,t) (3.93)

vhere

T T. T

D D(t) I + f I(T,7) GI(T) GT(7) T(T,,r) d1

f fCT. -)G 2 )# T(T))dTl (3.94)

But

4 T(T. it) - -(t,T)T " -[# '(t,T) at (t.T) 0 '1(tT) T

- yT(t)#T(Tt); (3.95)

t 0 tC rt - (t.T) - - #(Tt)F(t) (3.96)at at

and

-A- o()- - (t) t ' ( ) a D(t)io . (,)oT (t)o(T.,t)

*(T~t)C) T(t) #T(Tt)1
- t)G2)(t 2 T (t) (3.97)

Substituting Squations (3.95) through (3.97) Into Equation (3.93) ve

obtain the mnatriz Riccati equation
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(3.98)

8(t) -(- S t)F€,) - .(t)S(t) + 8 (t) I (t)lT (t) - G2 (t)G2 T(t) (t)

with boundary condition

.~ ( sT) -(3 .99)

Note that the solution to the above equation can be obtained prior to

the actual game. A siumary of the optimal strategies for the linear-

quadratic differential same with perfect information is presented in

Table 3.1.

.

,..
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TABLE 3.1

IHIAIY 01 OPTIAL DETW4DIIlSTIC STRATEGIE

x (t)x(t) - G(t)u (t) + G(tu() X(t ) x

* *Player I: Perfeact ueasuraments

Player 2: Perfect measurements

j a f(T T ! j T u - u2~tu(t)J dt
0

2u (t) - 2 (t)S(t)x(t)

S--87(t) - FT(t)S + S fG(t)GI (t) -G 2 (t)G 2T(t)J ;5T

J(u1 , 2  x T(t) S(t)x (t)

Necessary and sufficient conditions

T
I- f g(T..?)0 2 (r)G 2T0.)#T(T. -) dr > 0

t

.
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CHAMt 4

DInTODUCTION TO STOCRASTIC DIFFERENTIAL

GAMES AND DILAYED CC4IMNT STRATEGIES

For the differential game considered so far, we have assumed

that we could make noiseless measurements of the system state vector

and use those measurements in the system mechanization, i.e., we

assumed a differential game with perfect Information.

In many practical situations, however, the players have access

only to noisy measurements, resulting in a Sam with Imperfect infor-

mation. Willman (83 has given a formal solution to this class of

games, but, as an apparent consequence of this imperfect information,

attempts to express these strategies in terms of finite-dimensional

estimate vectors have been unsuccessful. A version of this Same in

which constraints are placed on the player's state estimators has

been solved by Rhodes and Luenberger (171

A subclass of games with imperfect information where one of the

player's measurimnts are corrupted by white noise and the other

player has perfect measurements was solved in 1968 by Bohn and Ro (9]

for a pursuit-evasion game and in 1969 by Rhodes and Luenberger (101

for a more general game.

Rareanyi (18) , in 1967/1968, used a chance move as a mathemat-

ical device In the analysis of static games with Imperfect Information

to reformulate the game into a Same with perfect information, called

the ftayes-equivatent" of the original Same. The players enter the

game, so to speak, a chance has made its choice. In part I

, .. so



1191 R larsanyi recognize& that this time gap is crucial when coop-

erative games with imperfect information are being played and shows

that the normal form of a layestan game is, in many cases, a highly

unsatisfactory representation of the game situation. Re argued that

the Dayesian games must be interpreted as Sgamo with delayed commit-

ment.

In 1972, Ausann and Xsschler 171 pointed out that the diffi-

culties due to the time gap exist even if the players are playing a

two-person zero-sum game with imperfect information and Ho (211

extended their results to stochastic two-person game.

in this chapter, we will define the differential game problem

in which the two opposing players have access only to noise-corrupted

output measurements and introduce the delayed coamitment strategies

via a simple example of a one-stage stochastic difference game.

4.1 GLMES WITH DMUFECT STATE fIMATIOH

As pointed out in Chapter 2, if the output measurements are

corrupted by a random process we are faced with a stochastic problem.

In order for a stochastic game to be mathematically tractable, the

measurement noise must be describable by a finite set of sufficient

statistics. In practice this means a linear system with quadratic

cost and Gaussian noises corrupting the output measurements. The

sufficient statistics are then the mean and covariance of the process.

Consider the linear system described by the vector differential

equation

dx*(t) * - V(t)x(t) - Gl(t)ul(t) + G2 (t)u 2 (t) (4.1)

S1
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to which player 1. controlling uI(t), has available measurements of

the form

81(t) = 31 (t)x(t) + wl(t), (4.2)

while player 2, controlling u2 (t) has available the measurements

52(t) " 12 (t)x(t) + v2(t) (4.3)
. P1 EP2

The vector x(t)Cz n is the system state, ul(t)Cp andu 2 (t)C E are

the control vectors, a1(t) and z2 (t)C e
2 are the measurement

vectors. The matrices F(t), Gl(t) and () have the appropriate

dimensions, while the matrices 1(t) and 82(t) are respectively,

Sm1  n and m2 x n with al, *2 <n. The noise processes fVl(t) and

1w 2 (t)j are white Gaussian, with properties

. co V (o I t) W (1)1  - , v (t ) a It-)

*i.. coy 1w2 (t), w2 (t) - I12(t) 6 (t -1) (4.5)

" coy IWl(t), w2  - 0

The Initial state x(t ) is a Gaussian random vector, uncorrelated for
0

all t with w (t) and v2 (t), and having a mean of x and a covariance

.-I-x(.o).-(.o P-o (4.6)

The cost functional or payoff to the game is quadratic:

3 2" (4.7)

t T u2 1tcudtlt j
to to
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where the final time T is fixed and the expectation is taken over

il the underlying random quantities .(x(to), vl(t), w2 (t)). The

.simplified form of the payoff functional has been assumed, which can

be obtained from a more general formulation using the transformation

equations (3.4) of Chapter 3.

Let us now turn to the admissible strategies. Let Zi(t) ,

1 - 1, 2 be the output function measured by player I over the Interval

., Ito t)% to.*

z:: Z(t)- (a (8),8) me It t (4.8)

the class of admissible strategies are then restricted to those U1

and U2 which give rise to the feedback control laws

U1  : '1 - u1 (Z1 (t),t)

U2 : u U2(z2(t,t) (4.9)

Thus, the admissible strategies can only depend on the past accumu-

lative observation data. Iquation (4.9) can be expressed equivalently

for i- 1, 2 as

U<i(t) m.,(tt..t 1 , .# Izi(s).S <.. I. (4.10)

where# . is viewed as asmapping from& CC t.o.,T

a"d cm [t 0TJ is the class of continuous functions defined on j .TJ

with values in IP.
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The mapping #i(t, ) for I - 1, 2 satisfies a Lipschitz con-

dition:

A(tg)It - £ , 8 J  (4.11)

for all t 6 ItoTI where a is sone constant. The Lipschits condition is

" imposed for technical reasons; It gives a sufficient condition for the

existence of (z(t), (t)), (x(t),:2 (t)) In (4.1) through (4.3).

-* When each controller is allowed either perfect measurements or

noise-corrupted measurements . a total of four problems may be formu-

lated, of which, due to symetry, three are basically different.

Figure 4.1 ahove the problem classification and indicates those discussed

In this paper, together with some references to previous papers which

exmined solutions to those problems.

Perfect Noisy

Player I Heasurments MeasurementsClosed-loop 

Chapters 
5, 6

Perfect Gome

aeasurements Chapter 3
114, 151 19, 101

otsy Chapter 7

Measurements 18. 17, 221

Figure 4.1 Problem Classification
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As shown In Chapter 3. the necessary and sufficient condition

for a solution of the two person zero-sum &m with perfect information

.1o more stringent than previously determined. The solutions obtained

so far to the gaS with noisy measurement@ are valid only under

restricted circumstances. To discuss those restrictions and to develop

the general solutiolt concept to games with measuremt noise ws will

now turn to our tutorial example.

4.2 A MMI TT , i

The concept of delayed coisitment strategies to stochastic

differential gme can best be explained, It ti felt, by using a very

simple one stage stochastic difference ame example similar to that

presented by No [21] . The notation 1(l, r) Indicates a normal pro-

cess with a mean and a covariance equal to I and a respectively.

Consider the scalar dynamic system

3 - 3 -u u-z +u -u (4.12)

where x z'-N(O, e), and uI and u2 are the controls of player I and

2 respectively.

. Consider also the performance criterion

j 'I 32 32 + u Ru 2 1 (4.13)

which player I attempts to minimtse and player 2 to maximize. Player I

receives so measurents, while player 2 is given the measurats

2'= x W V2 -11(o, 1) (4.14)
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where x and v2 are Independent. The class of admissible strategies

for player I Is

U1 :u - kI - constant (4.15)

and for player 2 is.

U2 2 . (4.16)

We can obtain the prior com itment strategy by substituting (4.12) into

(4.13) which gives

JR13 2  U . 2u1  2 + 2xu1  2xu2  2u u1 (4.17)

Then for

u kU1 = k

(4.18)
u 2 "k2 2

we can write

J(kk 2 ) 21 Z2k 12_k22 22+2k1x k2 2  2 1 - z2

2 2  k (ak+x1) 2k~ kz

-12k. ( 2 - k2 2  2k 2. (4.19)

both the minimax and maximin solutions to this simple problem give

~~u, ' s (4.20)
2 a+1 2
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:. wThus, Ul° u 2  form a saddle point pair and

J(u1 ,u 2 ") 2(0+ 1) (4.21)

and it has been assumed that ul7, U* form the solution to the differen-

tial gi .

Hovever, consider the situation facing player 2 during the

actual play of the game, fter he has received the information t2 and

before anyone has acted. Player 2 nov faces the payoff

32(Uu) 1 2u 211 - u 2 + 2xu1  2xu2  2u u2 z (4.22)

and the secure strategy of this maximizing player is obtained by

finding the maximin solution of Equation (4.22) subject to equations

(4.12),(4.15) and (4.16).

For arbitrary u2 the miniming strategy u1  obtained from the

partial derivative of J2 with respect to uI is

m' T " - x2  (4.23)

Substituting this result into Equation (4.22) gives

.Q (NI X 4.25)32cu2) 2. i- u2 - x2 - 2 2 2  121

K °5

r
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" and the maxzsizing u2 is found to be

* uA I C -
U 2  3 x2 -+ z l2 (4.26)

and thus

2 2A 2 a
-U 3 o+1 2 (4.27)

* The resulting maximin solution is thus

U1 r-K 1  z2  (4.28)

3 1 z Z2

u - -K z~ z (4.29)
2 3 21

Since x2 can be regarded as part of the prior information and thus is

a known number, u1 and u2 satisfy the restriction on the class of

admissible strategies.

An analogous argument shows that the minimax stratagies are the
._E u * *

samt as the inaximin strategies. Hence uI and u2  are not just the

maximin solution, but they are a saddle point pair for J2, i.e.,

- (u*u 2 ) J (u ) (u (4.30)[ "2 12 - 2 1 2 J2(VUl2 S(.0

and the resulting payoff is

U - 2 2 (4.31)
2 (u 1 ,U 2 ) 6 2 s2
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On the other hand, if player I uses strategy u1  and player 2

uses u2 , then

' 2 (* 13 2 z 2 (4.32)

Obviou2(sly, 72 (0+ 1)2 Z

Obviously, i 2(u1 ,u2 ) J2(u1 ,u2 ) and we conclude that for all

possible values of the observation z2, the strategy u2  is actually

a safer strategy for player 2 than u0

The reason for this phenomena as. first pointed out by Harsanyi

[19 1 and then by Aumann and 14achler (7 1 is inherent in the Normaliza-

tion Principle of game theory. In the extensive form of the game a

player makes his decision as to what control to use after receiving

his measurements, while in the normal form of the game, this decision

is effectively moved to before receiving those measurements.

In many games, the passage from the extensive to the normal

form does not affect the course of action of the players and the two

situations are formally equivalent. But, in our gars, with imperfect

information this passage changes the outlook of player 2. Indeed,

If player 2 decides on a strategy before receiving the measurement

. he is justified in using the expected value of i2 in his payoff

function. However, when player 2 is Informed, before making his

decision, that a specific z2 has been selected, there is no longer

any justification for using the expected value of a2. Thus, after

the Information is received, we really have a non sero-sum game

-: facing the two players, with (4.17) the payoff for player I and (4.22)

the payoff for player 2. It is this change in outlook that is

'9



ignored in the passage from the extensive to the normal form of the

game.-

In terms of Rarsanyi's discussion the players "enter" the Same

after the "chance" (the measurement noise) has made its choice.

During the play of a stochastic differential (difference) Same at time

t or tk greater than to, the players effectively also "enter" the

game having received the actual measurement (noise corrupted) up to

that time.

Returning to our example, if-player 2 has reason to believe

that player I is comitted to the strategy u1  0 0, then on solving

the resulting one sided optimal control problem from player 2's point

of view,

a" ma J(U 1 u2) j 2(0,u2) - 1 u 2  1 (4.33)

gives

V2 x+lz2 77_1 z2 (4.34)

Similarly, if player 2 is comitted to u2 "- + I a2' the solution

to the resulting one sided optimal control problem from player I's

point of view is

u 1('lu 2o) - 2 I1  - 2 2+~
ii-

"2 1U 1)'

(Cont'd)
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2 +4 T (4.35)

which gives

j . . u1* -o0

Thus, the strategy pair f ul7I u2 1 is a Nash equilibrium solution to
the non zero - sun game. Hance if player 2 knows a priori that

player 1 vii use u,*, or If he can convince player I that he is

using u, then his optimal strategy will be u However, it is22

well known that Nash equilibrium strategies do not possess any minimax

or guaranteed value properties in non zero - sun games, end without

this a priori knowledge there is no reason at all to play u2 when

u2 *s safer Wad available.

.1



CIAPT 5

T-E ?lRFCT/NOISY DIFFUIN1TIAL GANE

In this chapter we discuss the case where one of the players

has perfect state Information while the other player has only noisy

measurements of the itate. A physical example of such a problem would

be the pursuit-evasion problem of a homing missile and an evading air-

craft where the missile has considerable ground support via an up- and

dovnlink to determine the state of the evader.

The problem is basically the same as that solved by Behn and

no 191 as a pursuit-evasion differential game and extended by Rhodes

and Luenberger 1101 to more general differential games. Their solutions,

however, are prior coitment solutions and assume that conditions are

such that the player with perfect state information can deduce exactly,

at each time t, the error in his opponent's state estimate.

In Section 1, of this chapter, we formulate the stochastic pro-

blem and discuss the prior comitment solution. The delayed comitment

strategies for player 1 and player 2 are then obtained in Section 2

using function space techniques. It is then shown that the results

can be interpreted in terms of matrix differential equations of the

liccati type.

The delayed comitment strategy optimality criteria are dis-

cussed in Section 3 and compared with those of the prior comitment

strategy. 'The chapter is then concluded with a summary and discussion

of the results obtained for the perfect/noise corrupted two-person

differential Same.
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5.1 PR oILDI FORM UTI ATM &M 101 coR4OI T SOLUTION

The problem formulation differs only slightly from that pre-

ented in Chapter 4, in that only one player has noise corrupted

measurements of the state vector, x(t), during the game and an estimate

of the initial condition, while the other player has perfect state

information during the entire game. Thus, the linear continuous time

dynamic system is described by the vector differential equation

dx
K " - F(t)x(t) - C1(t)u1 (t) + G2 (t)u2 (t) (.1)

and the quadratic cost functional is

T (5.2)

J(U1 9 U2 ) " E i xT(T)x() + f uT(t)ul(t) - u2T(t)u2 (t)] dt
t

0

where the dimensions for the vectors and matrices are as discussed in

Section 4.1 and the final time T is fixed.

Player 1 has perfect measurements of the state z(t), while the

measurements available to player 2 are of the form

z2 (t) - H2 (t)x(t) + v2 (t) (5.3)

where the matrix 1 2 (t) is a2 x n with m2 e n. The noise w2 (t) is

assumed white, zero-mean and Gaussian with covariance

coy 2 (t)V2 (r) I W2 (t) a (t -) (5.4)
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The Initial state z(t0 ) for player 2 is assumed to be a
0

Gaussian random vector uncorrelated with v2 (t) for all time te to,TI

-and having a maen T and covariance
0

c: ov Ixlto),x(to)I " (5.5)

The Initial state for player I is z(to) - x.

Let Z2 (t) be the output function measured by player 2 over the

interval [tot), i.e.,

z2(t)- I(-2(,)',) : ,E [toet)i  (5.6)

The class of admissible strategies are restricted to those U1 and U2

which give rise to feedback control lave, i.e.,

U1 : u1 - u1 (x(t),t)

(5.7)
2 :1 2 " u2 (Z2 (t)'t)

Let the best linear estimate of the system state z(t) given the

measured output function Z (t) be denoted x2(t), i.e.,

X2 (t) #E (x(t) I2 Z(t)I (5.8)

The corresponding estimation error j (t) is then

x 2 (t) 4 (t) - 2 1t) (5.9)

64

- I



Since the random variables are normally distributed, the best linear

estimate will also be the overall optimal estimate.

Previous prior commitment solutions require that conditions are

such that the player with perfect state information (player 1) can

deduce exactly at each time teto,TI the error in his opponent's

state estimate, ; (t), or that this information is provided by some

'ystical third party."

In the more general case, where player I cannot calculate nor

is provided with ;2 (t), or equivalently W2 (t) from which T 2(t) - x(t)

- 2 (t), he will have to build a filter from which he generates an

estimate of his opponent's estimate, denoted Wx2 (t). Obviously,

x21(t), based on noisy data, will deviate from 2 (t) and player 2

should be able to take advantage of this error in player l's estimate

of the estimate of player 2, leading effectively to an additional

term in player 2's control. However, such an additional correction

term is based on noisy data and the opponent, player I, should be

able to take advantage of this error. However, the correction of

player 1, in turn, is based on noisy data and player 2 should be

able ........... .

What we have just encountered, if the general problem is

solved from the prior coumitment point of view, is known as the

closure problem in stochastic games. It expresses the fact that an

infinite number of terms seem to be required in the optimal

strategies of each of the two players.

For the differential game defined by Equations (5.1) through

(5.7), and under the assumption that player 1 can determine exactly
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the error in player 2's estimate, x2 (t), the prior commitment optimal

"- strategies obtained by Sehn and Ho and Rhodes and Luenberger are

u1'(t) G GT [S(t)x(t) + NtTt

(5.10)

- T Ai .u2(t) 2 (2Tt)s (t)xCt)

where the symmetric gain matrix S(t) satisfies the matrix Riccati

equation

-S~) FT I T T S 5.1
S"" " "SF(t) FT(t)S + S [GI(t)GI (t) - G2 (t)G 2 (t)j S (5.11)

with boundary condition

S(T) I (5.12)

and the symetTic gain matrix 1(t) satisfies the differential equation

I-NF(t) - FT(t)11 - S I C1 (t)G I (t) - G 2 (t)G 2 (t)j

+ (S + N)G 1 (t)GT (t)(S + N) + NP(t)H2 T(t)l2(t) (5.13)

T -1
+ H2(t)OW2  (t)H2 (t)P(t)N

with boundary condition

1(T)= 0 (5.14)

The symmetric error covariance matrix P(t) satisfies

*In order to avoid confusion with the state estimate In the delayed

commitment slution discussed below, the subscripts have been
emitted from the state estimates and their errors in the prior

Scommitment Same.
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P-A~t)? + PAT(t) - 112T(t)V2 1(t)12 (t)? (5.15)

with boundary condition

P t ccv I x(t 0).x(to)I 1 (5.16)

where the matrix A(t) to defined by

A(t) F (t) - G1()G 1Tt IW s tW + N W) (5.17)

Note that Equations (5.15) and (5.13) are coupled, so that the

solution of this problem involves a nonlinear two-point boundary value

problem given by these equations with boundary conditions (5.14) and

(5.16). The solutions of the matrix Riccati type equations, i.e.,

Equations, (5.11) through (5.17) can be obtained off-line, prior to the

actual gae.

The corresponding optimal expected cost from time t is

J~u~,u - I T(t)S(t)x(t) + j,;T (t)N(t)_(t)

T

2 rJEsPsH($)W 2- (s)H2 ($)?(s~d (5.18)
t

where tr [j is the trace operator.

5.2 D~LLAYED CgBIITKET STRATEGIES

During the actual play of the game at time t, and frcm the

point of view of player 1, the payoff functional becmes

'7



T (5.19)

I (I lT (UI() UTu()l d'r X t)!J1(u1,u2  2 Ijx C)x (T) + f ~ 2 7 2J I
t

where

• 1(t) - ((). s) a Itt) (5.20)

and while, as pointed out in Chapter 4, the strategy pair (u uo)

presenoed In Section 5.1 still retain@ its equilibrium property, they

are no longer secure strategies. In order for player I to determine

his secure strategy, he has to find the saddle-point solution to

Equation (5.19) subject to

x - V(t)z(t) - G (t)u (t) + G2(t)u2 (t); x(to) x (.21)

Player 2 is faced with the problem of extracting useful infor-

mation from his past measurements on which to base his control. 1ow-

ever, player 2's perfect estimate is x2 (t) - x(t) and for the purpose

of calculating player l's secure strategy ve assume that the allowable

strategy for player 2, In addition to being Z2 (t) measurable, is also

1(t) measurable. In other words, we want to determine that ul U1

and uo U2 x U2 which are optimal in the sense that for all te I toTJ

Jl(ul*,u2) _ J1 (u1 ,u2*) %.jl(u 1 u2") (5.23)

['S
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where

U1  : u1 - u(x(t)t) ('" (5.24)

' U2  : u2 M u 2 (Z 2 (t),t)

The delayed.coamitment game from player l's point of view is

then the same as that solved in Section (3.2) for which we obtained the

saddle-point solution

u (t) C G1 T(t)S(t)x(t) (5.25)

with the corresponding optimal response for player 2

u2* (t) - G2 T(t)S(t)x(t) (5.26)

where S(t) is the solution to Equation (5.ll),i.e.,

(5.27)

- SV(t) - ,T(t)S + S IGI(t)GIT(t) - G2 (t)G2
T (t) S; 8CT) I

The resulting security payoff for player 1, i.e., his lose

cailing at arbitrary time t is from Equation (3.90)

(U P'2 x(T)S(t)x(t) (5.28)

Note that in real life when player 2 does not have a perfect estimate of

the state x(t), the payoff to player I can only be better, i.e., smaller

than his loss ceiling.

If we nov consider the Same from the point of view of player 2,

his payoff during the actual play of the Same at time t is
T (5.29)

TT

32(ul,u 2 )2 UjZTr)z(T) fJu()ul(r) -U2 (r)u2(r)j dz 2 (t))
t
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and his secure strategy is obtained by finding the saddle-point

solution to Equation (5.29) subject to

Z - (t)x(t) -i W1 tu (t) + C2(t)u2(t) ;x(to) ; z (5.30)

For the purpose of determining the secure strategy of player 2,

vs assume that the Allavable strategy for player 1 In addition to

being X(t) measurable is also Z (t) measurable. Thus, player 2 wants

to determine that u 6 U1 x U2 and u *C U2 which are optimal in the

sense that for all te It J~

J (u1, 2  J2 u u) 3(uu) (5.31)

vhere U Iand U 2are defined by Equation (5.24).

In terms of the Hilbert space notation developed in Chapter 3

the payoff functional becomes

Z < *xo T~ul + Tu 2  Tx -Tu 1 + T u>

+ U u1 u> -< 2 u>IZ(t)j (5.32)

which includes the dynamic Equation (5.30), since It vas used to

develop the above payoff functional.

Thus, from player 2's point of view of a secure strategy,

player 1 minlimixes at arbitrary time t t

00



siUn < Xo- T U +T 2 U2 8 X Tlul +T 2u2 >

+ <U - <u29u2 (5.33)

From Section 3.3 ve know that the globally minimizing control of

player I is

uI - T IDI(Oxo + T2u2 ) (5.34)

vhere

D 1 - (I+ T1T1*) (5.35)

Substituting Iquation (5.34) into (5.32) gives

J2 (u2  E <x o - T1T DI(0xo+T2u2 ) +T 2u2 , Zo - TT 1 D1

(Ox 0 + T2u2) + T2u2 > + <T 1*Dl(t9 o + T2u2),

TI D-(x 0 I 2(t) (5.36)
T1*l( +u 2 ) < 2 3 2 > Z

vhich simplifies after some algebra to

32l(U2 )-m <#xo+T U ,Di(#xo+T u2 )> <u 2  > Z (t) (5.37)

Let us define. A T
1t) *. ( ut) - ~2tj1(t) - 2() Z(J(5.38)
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and consider the term

~I <#X.D I4> IZ2 (t) R f(S - x 2 + x 2 ).D1 O(z - ~2 + 2)> 1Z2(t)j

it <#- x - - ~2> I z (t)J + 2E <#(z -

*02 D1  > 1z 2(t)) + I I. 2  1 * 2 > I Z2(t)I (5.39)

But (5.40)

Z I {<(x- 2),Dle* 2 > IZ2(t)I -<fO2,D1 9f2 >- < (*0.402> 0

and

E I<#(x - 2 ),D I (X t2 )> 1 2 (t)jml f< TD 1 ( 2x

(x - 02) > I Z2 (t)J tr I*TDI #P21 (5.41)

where tr i ] s the trace operator.

Thus, In general, the payoff functional can be written as

-(U< + Tu 2 D( 2 + T

I 2 (2) " 2 02 T2"'Dl (* 2 2u2 ") > "< u2'u2 >

+ trI'T~~~ (5.42)

and rquation (5.37) becomes

J2(u2) <o 20 + T 2 2 9DI( 20 + T2 u2 )> - <20,.2 >

v* ['"TDI o] ) (5.43)
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where
- • jx ( to) -(t)

" coy j z(to). "o(t) " o

01m ~since tr • •T1 * 2Pie s independent of the control U~)

maximizing J (U2) is equivalent to maximizing

i(u) " < #0 + Tu D (#0 + Tu) > "< ( (5.45)
2 2 2 2 2 2 1 2 2 2 20 0

Prom the results of Sections 3.3 and 3.4, we know that the resulting

naxlmin control for player 2 is

* * *f T2I.+T l* T T l -2 (5.46)
"2 20 0

or

x2 C) .2 (tStX2 (t) (5.47)
0

where S(t) is again the solution to Equation (5.11), i.e.,

(5.48)

9 - 7S(t) - FT(t)S + S I GI(tC1T (t) - G2 (t)G2 T(t) S; S(T) - I

The corresponding optimal response for player 1 is from Equations

(5.34) and (5.47).

* TT2* 0 (5.2o

1  " 0  22 0 (5.49)

Rowever the initial time to is completely arbitrary thus if

2 (t) can be made available for any t, the open-loop controls

(Equations (S.46) aod (5.49) can be applied continuously and

73



immediately to yield optimal feedback control laws by replacing

to by t.

Substituting Equations (5.46) and (5.49) into (5.30), the

dynamic system for arbitrary t is

(5.50)

Sx(t) - 1(t) .6 C (t) (1 *D t x (t) + jG2(t)

_Gl(t)(T*D IT 2)(t) 1[(T 2 D*)(t)~ ~2() ~ 0)

and

z2 (t) = H2(t)x(t) + v2 (t) (5.51)

The linear-Gaussian.assumptions imply that 02 (t) can be generated by

a Kalman-Ducy filter based on a prior estimate of the initial state,

a prior estimate of the variance of the error of this estimate; the

measurements of the state up to time t; and the dynamic equation

* 2Q:) - F(t) - G1(t) (T1*D9)(t) + G, (t) (T2*D#)(t)J 0 2 (t)

+ 12(t)1  (t)w" (t) Ht) - 2(t)o2(t)I ;

,2(to) " (5.52)

where P2 (t) is the variance of the error of player 2's estimate and is

obtained from

-- 1(t) - G(t) (Ti 1Dj (t) J 2 + P2 t

'1(t) - G1 (t) (i* ) (t) T - 2 (t)N2 T(t)W 2 - (t )H2 (t) 2 (t);
(I- *, J - --

P(to) = o (5.53)
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lance, the closed-loop optimal controls for player 2 and the corres-

ponding optimal closed-loop strategy for player I are:

* * A
'2 u T2 Dx 2

* *il * * t tA *A * ,

" - T1 Diox + T1 DiT2T2 Dfx2  T1 DOx2 + T1 D #x 2  (5.54)

If we define the symetrix matrix

N 1 (t) 4p T (T,t)D (t) (Tt) (5.55)

where
TI

D (t) I + #(TIT) G(T)GT (T)0 T(T.)dT (5.56)

then taking the derivative of N1 (t) with respect to t we obtain
, (5.57)

V Wt)- .Tt)D (t) (T.t) + #(T, t) D(t) 4 (T,t) + 0 (Tt)D(t)9 (Tt)

But
d (t) d -l

-F , t D (t ) -Ft DT,t (t)DT(t) •(~)It

T T

thus

N (t) - - IT(t) *T(Tt)D (t) *(T.t) + *T(T t)D (t) #(Tt)G (t)Gi T W

" T (Tt)D1(t) q(Tt) - jT(Tt)D(t) * (T.t)F(t) (5.59)

or

1l(t) - -4 l(071(t ) - 1TWtN I(t ) + Nt(t)Gl(t)GiTN 1(t) (5.60)
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with boundary condition

x (T) 1 (5.61)

The optimal control for player 2 and corresponding optimal

*response for player I can then be written as

S2() G2T (t)S (t)02(W (5.62)

-(t) GIT(t)S(t)02 (t) + GT (t)N1 (t)W2 (t) (5.63)

where S(t) and 31 (t) are defined by Equations (5.11) and(5.60)

respectively.

Furthermore, using Equations (5.11) and 5.60), the Kalman-

Bucy filtar (Equation (5.52))and corresponding covariance equation

(5.53) can be written as

(5.64)

2 (t) 7(t) - G 1 (t)G 1 (t)S(t) + G2 (t)G 2 WtSW]) 02 (t)

2 P(t) 12T (t)W (t) 2 (t -2 1 t) 2 (t Jd 'o

and

.2(t) 17(t) - G l(t)G I I(t)j 2 (t) + ?2 (t) F(t) -Gi (t)G(t)

.It) .P2 (t)R2 T(t)W 2 1(t)H2 (t)P 2 (t); P2(t ) Po (5.65)

If we define

*T
X() 4 E fz)x(t)T iZ (t)j

0 92(t) 2 (t) 2(t) -2 (t) 1Z2(t)

,X 2 lt) + P2 lt) (5.66)
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then on substituting the optimal strategies (Equations (5.62) and

(5.63)) into the system equation (Equation (5.30)) we can write, after

post-multiplying by x T(t). adding the transpose of the resulting

equation and then taking the conditional mean of the resulting expres-

$ion,

SF2 GIGI S 2 + GIGINP2 + G 2 C 2s

A T 6 T
S SGIG - P?2 11GGT + SG2G T (5.67)2 1 2 2 2

Substitution of the optimal strategies into the payoff functional

(equation (5.29)) and using the trace operator allows us to write

T (5.68)
J2 (uz*,u*)"~ tr x MT + f [GT S2 S+G lGTN1P2K-G CGT S2s dt

t

If we now add the perfect differentials dt (SI 2X t~ 1 2

and Ij (d SP) into the integrand of Equations (5.68) and compensate

by adding S(t) 2 (t) - S (T)X2 (T) + IN 1tW - S t I P2 (t W Il(T)- S(T)1

P2 (T) outside the integral, most of the terms cancel and we obtain as

the security payoff or lain floor for player 2

(5.69)

J2 (U1* U2*)m~XT(t)S(t)x(t)+j 21O(t) NW(t) - S(t) 2 (t)

+ tr f - S(s) P WN T5w l (s) 2(s)P2 (a)d]

The entire game from player 2's point of view can be described

by a 2n-dimensional system consisting of the vectors x(t) and Ax(t) or

| similarly of the vectors x(t) and 1(t). The jx (t) I system is

obtained by
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substituting Equations (5.62) and (5.63) Into the system Equation

(5.30) to give

T A Tx, " F (t)z (t) - GI (t)GI lt)S (ti 2 (t) -G It)atT (t)N I (t )W2 (t)

+ G2 (t)G 2 (t)S(t)02 (t)

+ G2 (t)G 2 (t)S(t)] 0 2 (t) (5.70)

The input to this equation is obtained from Zquation (5.64) or,on

"ubstituting z2 (t) - B2 (t)x(t) + v2 (t), from

(5.71)

+P()T(t)St(t)+ (t) GT (t) (t) ' (t)1(t)v 2(t)

-'+ P2(tll2 (tW (H2(t)x(t )  2 (t)W2 (t)R2tw

Then, from player 2's point of viev the entire play of the game can be

described by the 2n-dimensional differential equation

IG I G GIs + G 21 1 M1 - ,S'G2G TS

----------------------------- ------ --- ------------------------ I
282 '2 12 11 22 2222][

- . .... ....... v (t) (5.72)

[12 2 T1 2  H2 ] 2 t

4 In the above system the white noise v (t) which is additive measurement

noise to player 2, appears as process noise to the 2n-dimensional

system.
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5.3 DISCUSSION

The prior comitment and delayed commitment solutions to the

stochastic differential Same discussed in this chapter are sumarized

in Tables 5.1 and 5.2 respectively.

In the prior commitment formulation, the optimal control for

player I consists of the s of a term that is the same as that of the

corresponding deterministic differential game and a term that is a

linear function of the error in his opponent's state estimate. The

optimal control for player 2 satisfies the Separation Theorem. Deter-

rination of the feedback gain for the first term of player 1 and for

player 2 requires the solution of a simple matrix Riccati equation

with terminal boundary conditions. To determine the feedback gain of

the second term of player l's strategy, however, we are faced vith the

often difficult task of finding the solution of a nonlinear two point

boundary value problem defined by the equations for N and P in

Table 5.1.

In the case of the delayed commitment formulation, the secure

strategy for player 1 is the same as for the deterministic game, while

the secure strategy for player 2 satisfies the Separation Theorem.

Determinetion of the feedback gains involves the simple solution of

matrix Riccati equations with all the boundary conditions for each

equation given at one point in time.

The secure delayed cimnitment payoff, Jl' for player I is4.
Identical to that obtained in Chapter 3 (Equation (3.90)) for the

corresponding deterministic game. The difference between Jl and the

prior comitment payoff, J, can be written from Equations (5.28) and
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Table S.I Summary of the Prior Comtment Strategite

" - 1(t)x(t) - GI(t)ul(t) + G2 (t)u2 (t), z(to) U(r ,Po)

player 1: Perfect measurmnts

P Player 2: 2 (t) - I(t)x(t) + v2 (t), 2 .N(Ov 2 )

j IIIK (T)z (T) + fIuJT(t)ul(t) - T Atu2 t)Id
t

0

u~lt)- GW T (t)S(t)z(t) + G Tt) (t)r(t)

T A
u (t) - G2 (t)S(t)z(t)

T TS " - SF(t) - .7(t)S C(t)G1T(t)- G2(t)G2 (t)j ; 5(T) - I
u - - 11(t) - ,(t)1 €,>,-, l S 1 1(t)- 02(1 (t)(2 t J

TT T

+ (S )G 1 (t)G 1 (t)(S + N) + 1p (t) 2T(t)W2  (t) 2 (t)

T -1+ 12 (t)W 2  (t) 1 2 (t)P(t)N; 1(T) - 0

T TA 1 Aft * 1 1 C1 1  + G2 G2 S)z + M2 TW2  - 2 x ft 0) a
AP + PAT - p2T(t)Wl(t)2(t)p; p(to) Po

A(t -1(t) - Gl(t)lT IS(t) + (t)j

J('j, ") " am1 ()()+ ','()''i~[ "]U xW+1POT(N(12 2 t3cxt

tI

so



Table 5.2 Suinary of the Delayed Comitseut strategies

x F(t)ztW -G(t)ul(t) + G 2 tNW(t, x (to) "N(i,,P*

P layer 1: Perfect saasurmeutu

Player 2: s2(Ct) " 2 (t)z (t) + v 2 (t), v 2 N (O,v 2)

jmfi x T Mx M + f T (t)u(t W u T (tu 2  t t
to

*Define: z2(t) - s f(a(),@) a Cc It 0

1 : 1  u 1 (zt).t)

72 : u2 mU 2 (Z2 (t),t)

t

)(T ) - f * (t ) G ()u (r)dT
t0

(T )(t) - C(t)qTCr.t)g

mI + T 1  T T 272 *[

I1  + T Tl*1 D2 -1 - T T*1

1lye 11 *

. jZTTXT 2 u I(t)u I(t) - ~2 (t)u 2 t) *tj
t0



Table 5.2 (Contirnued)

T

u2 -T 2 D~x G2 c2T(OtX(t)

S -- 5(t) -P v(t) s +S GcI(t)GT- G (t) G2Tt W

(t)) G2 2

Player 2

J 2  ~3j~c~i~ + 2 Tt)u T(t)J dtIZ()

u 2  T22 x G2 (t)S (t)§ 2(W

u T1 D9~ + T D1 p G 1 (t)S (t)x (t)

+ 0T1 W NJ (t) - 8 (t) V'2(t)

T T
8- - 27() ITtsGI (e)1 1G()G1 ()3 1- 1(t)G 0

'2" [N -. + G2GT5 + 2E2t) 2 T ' -t~ 2IP2 M

A A

2 (to) o3
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Table 5.2 (Contimued)

'2 G G1 G 1 1 1 2 + 2 - GITN IJ

* J( *)_jlT(t)() (t) + 1 xT~t INi)-St1'(

24rJ~la f8a J2(s)12 (9)W2 (@)H2(s)p2(d]

K It



(3.90) and using the trace operator as (573)

1::! u2 1 2' N

Taking the trace of Equation (5.13) and collecting terms, we can

write

P~t)12 ()W2 (t)H2 (t) -G(t)G1 (t)Sj

(t) P(t)H2 T(O)Wl (t)1 2 (t) -Gl(t)G T (t)S JT N

+ NG1 (t)G1
T (t)N + SG2(t)2T (t)S ;t 1T 54

The above equation can be viewed as a linear differential equation

driven by the term tr NIG1 (tG 1 (t)N + SG (tGT (tOS which in

greater than or equal to zero. Since the terminal value, tr I1N(T)1

equals zero, it follows that trI N(t)I can only become smaller than

zero as time progresses, and we conclude from Equation (5.73) since

tr( P~ land Cr IW2  are positive that

J (ul~ 2 I 'Uul ,u (5.75)

To study the relation between J and the delayed commitment

secure payoff, J2 I for player 2, assume that P(t) a P2 (t), then

subtracting Equation (5.69) from Equation (3.90) we obtain

SJ(ul,u2) - J2 (u l . u*) - tr I (N S) P

(Cont 'd)

6'4
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- -

+ f N(a) - (z (s)- S(s))J P(S)H2T(s)W2 l'(s)H;) 5 s)dI

t

But from Equations (5.13), (5.60) and (5.48), i.e., the N, Ni and S

equations, and using the trace operator we can write

Ki - 1G1 G1.~N 1 -IS + 1G1 (S + N) + NP'H2TW2 H

+ 'W2 s- 2  ;2 tr IN(T) - (1(T) - S(T)) -0 (5.78)

From our earlier observation tr N(t)I 0 o'tt 1 T, and we can again

view the above equation as a linear differential equation of

tr IN - - S) driven by the term tr I- NG 1G1TN1 - (S + N)G G1T

(S + N) + 2 " + ETW2"H 2PNI which is smaller than or equal

to zero. Since the terminal value, tr I N()- (1 (T) - S ()) is

equal to zero, it follows that tr IN(t) - (N1 t) - S(t))I can only

be greater than or equal to zero. Thus, all the terms in Equation

(5.76) are _ 0 and hence

'"- J~2(ul*,u 2*) 11 auu 2 ) (.9s-.*

and as a result of Equation (5.75)

2  1  u2  J(ul,u 2) 1 3 1(u1 ,u2 ) (5.80)
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Note, that if W2 (t) is large, or if during the game

-7.

2 1(t)- 0 ; P(t)- 0

:- then
z::.. i~t --- (N (t) - i(0)

.. and

J2 (u1 *,u 2*) -- J(uj, u )

-- The relationship between the various payoffs discussed above is

shown in Figure 5.1

Payoff

* *"0 0

J2 ( 1 ,u2 *) J(u,u2) J1 1 'u2 )
Gain Floor Prior Commitment Loss Ceiling
(Player 2) (Player 1)

Figure 5.1 Relationship Between Prior Commitment and
Delayed Commitment Payoffs

It is ediately clear from Figure 5.1 that if player I knows

that player 2 is comitted to strategy u; (t), he should play u (t)

and similarly for player 2. Thus if the players had to determine at

t - to the strategies they would have to play for the rest of the game,

ul(t) and u2(t) would be the proper choice. However, as we have seen

in our tutorial example (Section 4.2) as soon as the game has advanced

to a time t : t0, u1(t) and u (t) become unsafe strategies, as compared
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to u1 (t) and u*(t) respectively.

On the other hand, if either player I or player 2 commits him-

self to his secure strategy, he can only be assured of his secure

payoff. Thus we find, as is usual with games with imperfect infor-

mation, that the players should keep their strategies secret.

" - The actual payoff, J0  can only be calculated at the conclusion

of the game, i.e., when everything has become a fact, and it is

calculated from

UT
JoM x (T)x(T) + (I) Tt T 1 (5.81)

T J "" l(t)u 1 (t) - U2 (t~u2 (t)
t

0

which depends on the actual values of the control functions u (t) and

u2 (t) employed during the game, which in turn depend on the strategies

" employed and the actual values of w2 (t).

I
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CHAPTER 6

A PURSUIT-EVASION EXAMPLE

One of the differential game problems most easily visualized is

the problem of pursuit-evasion. In order to illuminate the results of

the previous chapters we will, in thiu chapter, analyze a pursuit-

evasion problem in two-dimensional Euclidian space where the pursuer,

player 1, has perfect measurements of the state of his own system as

well as that of the evader, while the evader, player 2, has only noise

corrupted measurements. The problem satisfies Behn's [91 require-

ments for player 1 to determine exactly the error in player 2's

state-estimate, and thus allows us to compare the prior and delayed

commitment problem formulations.

As mentioned in Chapter 5, a physical example of this problem

is a homing missile and an evading aircraft where the missile has an

inertial reference unit which allows accurate determination of its

* state vector and, in addition, has considerable ground support via an

up- and downlink to determine the state of the evader. The aircraft

has only noise corrupted measurements of its own inertial reference

system and of the missile from noise corrupted radar measurements.

6.1 PROBLEM FORMULATION

The space diagram showing the geometric relationship between

missile and airplane or target during the encouTter are shown in

Figure 6.1. The missile and target velocity, VN and VT respectively,

are assumed to be constant. Gravity effects have been neglected and

4 the encounter is assumed to be restricted to the x-y plane.

Sx-
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The fundamental relations governing missile and target paths

are the velocity equations 1221

NN co VNCI

-,4m VM OsinyM
,c (6.1)

VT Cos 7 T

7T VT sin T

The angles are subject to change since both missile and target are, of

course, free to maneuver in the x-y plane. At an arbitrarily selected

time t - t0 , the angles -y. and VT have some initial values 7 M and

- and at a later time t are perturbed by small amounts y and

Vt to V and YT respectively, while the line of sight has changed

from zero at t - to to a . Under these conditions, the instantaneous

angles of the velocity vectors are

..x(t) - TMO + ym(t)' (6.2)

and

nVT(t) - ) + Vt(t) (6.3)

so that the linear velocity components are

MVxcor Vjhj0  - V sin

;M=VM asin )o + VYMv coo. sY
(6.4)

X" mVT coS 'Y - VtVT sin 'jT0

YM ~V T sin yTO + VtVT Cos g TO

90qg
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where the small angle approximations sin V V and coo Vy I

have been used.

If we assumne that the missile and target are initially on a

* collision course., i.e.

V sin -y V siny 65T nVO N ND0 (65

then using this equation and Equation (6.4)

T ICM-VT COS 7 -M CO 7,0 - 't -ym)V3 sin

If we neglect the difference term involving Vt -Y the closing

velocity V~ is given approximately by

V VC XT - .VT coo To sxoo. (6.7)

and in view of the assumed constant velocities

XT (t) -M 2(t) C V(T -t) (6.8)

Since only the relative positions of the missile and target need to be

known; I*.x r (t)- x T(t) - 1 (t) and yr(t) YT (t) -YM(t) ' the relative

uissile-target position is uniquely specified by giving the time t

and the projection of N and T on a line, L, perpendicular to the

Initial line of eight. Thus, the original problem has been changed

from a two-dimensional intercept problem with unspecified final time

T to a one-dimensional intercept problem with a final time

.7.1



%1 _ m o , a , ,. m . ,. ,. w . ,. . . , . . - - - . " '. - . " .. _ " " . .. . " '.

- XN(o)

TV (6.9)

Ue If we let yj and vi be the projection of the missile's position

and velocity respectively on L, then we obtain as equations of motion

for the missile

1- (6.10)

1 "V.V sin T M0

with initial conditions

Sy' (t o ) - y(o)

7% . (6.11)

v(to) 0 vM sin sin

By the same analysis we obtain a similar set for the target with the

subscripts 1, a and M replaced by 2, t and T. ButVV - 32.2 n, where

n is the lateral acceleration in G's, and we can write

(6.12)

and

- (6.153)

v 2 "12n 2

S-" where

K1 - 32.2 cos T.,

(6.14)
K2.- 32.2 cosY T,

and
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ni na are the lateral missile and target accelerations respectively

in O's.

nov lot us,(t) and u (t) be the missile and target called for

accelerations respectively, and let us assume the following missile and

target system transfer functions

"-.n 1 (s) 1,
-- " + -

(6.15)

n(s) 2

where both TI and T2 are positive real numbers. The resulting

equations of motion under the above used assumptions of

1. Constant target and missile velocity

2. t bi and - t are small angles

-~ are then

" v1(t)

v(t) - Kenl(t) (6.16)

n1 U 1

and

j(t) - v2 (t)

2 (t) - K2n2 (t) (6.1.7)

n U

2 2



If we define the vectors

yll '1 712 '

Y Y21 - and Y2 Y22 , '2 (6.18)

Y31 al Y32 n2

Then we can write the system for the missile or player I as

0 1 0 0

Yl 0 0 K Y + 0 " (6.19)

0 0 -l/ ,r / i

with initial conditions

734(0)

yl(t) - V@ sin o (6.20)
0I0

or

il" '' + N °yl( ) " (6.21)

and for the target or player 2 as

0 1 0 0

0 0 K 72+ 0 (6.22)
o o - 72 21

L
IMI



-ali

with initial conditions

YT (0)

Y2 (to) - VT sin TO (6.23)

0

or

i2 PiY2 + G" Y2(to) Y2 (6.24)
0

and with a final time

T xT(to) " x(to) (6.25)
T "V (6.. .

VC

Player 1 has perfect measurments of his own and his opponent's

state vector, while the measurements of player 2 are of the form

z i (t) - 3 1 (t)y 1 (t) + wI (t) (6.26)

2 (t) - 12 (t)y 2 (t) + w (t)

where w,(t) and wv(t) are Gaussian white noise vectors, with zero

mean and with

coy Iw (t). wI (T)J . '(t) 6 (t -7)

coy. Nw (t), W2 (7) , W2'(t) 6 (t -7) (6.27)

coy IwI(t), w(v)J - C(t) (t -7)
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In addition, let the payoff criterion be given by

1 R JI 2 1o) Yo(T)J 0]
1u~~a~uI uJ(T (t)RtTu(t0, 0

+ fjujTt) (ul,(t 221t) dtj (6.28)

to

where both Ri(t) and t2 (t) are positive definite and a2 is introduced

to allow for weighting of terminal miss against energy.

The above foruulation will now be recognized as the classical

interception problem in Euclidean space; i.e., player 1, the pursuer,

attempts to intercept with player 2, the evader, at some fixed time T,

while the latter tries to do the opposite. Both players have limited

energy sources and do not care about the difference in the velocities

of the two players at the terminal time.
k,

From the point of view of the criterion, the number of "inter-

esting" variables are the same as the number of control variables.

Hence, this formulation of the game basically satisfies Behn's

criterion for the ability of player 1 to determine the error in the

state estimate of player 2.

If we define

xO(t)- ll f0 0 91 (T,t)yl(t) - * 2 (T,t)y2 (t)J (6.29)

where 1 (tr) and * 2 (t,r) are the transition matrices for player I

and player 2 respectively, then x'(t) represents the terminal miss
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predicted at time t on the basis that no control is applied during the

interval It, T).
The above transformation allows us to reduce the dimension of

the problem since on taking the derivative of Equation (6.29) and
i -using (6.24) and (6.25) we obtain

"':"~(T [ @ t)

z'(t) at 0 o . yL(t) + OI(Tt)(Fyl + GIu)

at 2 (T,t) 'Yt)(y2 + G2ul)

.- II , 0 oJ Il(.t)C ' - *2 (Tt)G(.

. - G(tT)u' + G (t,T)uj (6.30)

with

" x'(t ) - 0 0 jo o(T t o)(t2) M t (t ) (6.31)

where

G-o(tT) - 1 I0 01 Iti(T.t)Gl I
(6.32)

Gj(t,T) 11 0 0 oJI 2(Tt)GiI

while the performance criterion in terms of x' (t) is.

T (6.33)
. Ij 2 NT(T)x5CT) +*1 IulT(t)atl(t)ulv(t) - jT(t)aL2 (t)u2'(t)j dt)

.., tO
t0
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for our examples the transtion mtrix of the system of player 1 to

l . _ 11.2 "f/T I.

I f A I' (I a ) 1r

0 l, o (l- (6.34)

• :-.T/I.l

0 0 a

where

.,T time-to-o T - t

- The transition matrix for player 2 to the ame as that for player 1

.' with the subscripts I replaced by 2.

From Equation (6.32), G[(t T) and G (t,T) are scalars and are

Siven by

-.4 0

°- G(t.T) -- i 0 o(Tt) 0

+ ( - - 7
1) (6.35)

| . end

0

02'(to T) 11 j 0 0J92 (Tt) 0
12

. + Y.2 2( - a 2 2/t) (6.36)

• " - " -' -"-'- 
'

9il 
'

Z.EL.
' "

PL*
'

-
' ' :

"' '.. . . . . ." " " " . . .. - " , " w : ' "



"; Thus,
.: Tu(6.37)

-- .7T// 2 + 2u2(1.-O )u

with

x' (t) Y. (,0) '.YT (0)j + IT -to] ~v1 a inV - V sin -VTj (6.38)

and
,x' XT (to ) - xM((t o )

T= (6.39)
v

C

With the dynamical system reduced to Equation (6.37), the

measurements of player 2 must be reduced to measurements on z'(t). If

we define

(6.40)

Z 2 (t) 0 Il 0 0J 1#1(T't)H1 '(t)zl'(t) -* 2(T,t)1 (t)z 2 (t)j

then using Equations (6.26) and(6.29) we can write

ttl(t) W Il 0 011l1m,t) + R -wIV) - #2 (Trt)(y 2 1+

S-x'(t) + 11 0 O [9 1 (T,t)Hllvlw -4(T,t)H2 "lwpJ)l (6.41)

or

Z"(t) - x'(t) +w1(t) (6.42)

where the zero-mean, white noise process wv(t) is given by

w()-11 0 01 [1 1rTt) 1 lw #2(')H 2 (6.43)



r7" . -., '

with(6.4)

I - , - l l,W" 11 0 0] 9 Tt) IvWHl I #N-1I T T02 ~ ~ 111 11 *C1.t - ~ CN2  2 (1t

" 2(T't) 2 ' ICTUIT'I t) +*2(Tt) li 2 T *2 (T' t)j1l o01

If we define the energy weighting matrices RI(t) and R2 (t)

which in this case are scalars by r11 (t) and r22 2(t) respectively.

*then on using the transformation&

X - 5Xv

u r U (6.45)

u 2 - r22u

we can write the system equations as

aG (Tt) aG2 (Tt)

rl() ul (t) + r22(t) 2(t) (6.46)

az"(t) = x(t) + aw(t) (6.47)
22

Defining

1 G ( (T-t) a1  7 - / 1

aI(T t) a2  2 e~2 -
2 (t) r22  r22  *f 2]

(Cont 'd)
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I , 1 ! .. .- . .I .. . . . I - , , , 1 . . - . .. .. . -. ... . a

u(t) -az"(t)

2 2
::-t 2 (t) &72" (t)

SW 2 6 (t -T) a2I (t -7). (6.48)

We have the original problem reduced to the notation used in this

paper, i.e., the dynamic system is

(6.49)

x(t) - - "  [ - "  - 1 (t) aK 22 1 -f -/2

a j/1 uI r 1- Tzu 2 (t)

z2 (t) , x(t) + v2 (t) (6.50)

vith initial condition

(6.51)

W(t) x X a f. I() - YT (0)I1 + I T - tot 1v3 sin 'YO- VT s in 'Y4

for player I and an a priori estimate of x(to) for player 2.

and vith
zT(o) - No

T X. v0) ((6.52)

VC

Or

x(t) C, I G(tOU (t) + G2 (t)u 2 (t) ;X(to) - x
0 0 (6.53)

2(t 12 x(t) + v 2 (t)

and the performance criterion is (.4

.J(u x T CO (xTrz) +f I Ttu (t) 2 ~T (t)u2(t)I dt
12q 2 4 u~~ 1 2

to
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:i
Note that in addition to our simplifying assumptions of mll angles,

Y and a. and constant velocities, we have implicitly assumed that

player 2's initial estimates are such that the final time T to the same

I Z" for both players.
itim

6.2 DA, COMMEITNT SOLUTION

With reference to Table 5.2, the delayed comitment strategy

for player I is given by

T* u (t) - G, (t)S(t)x(t) (6.55)

vhere
a 2K 2IT 

-

2K2  2a r 22 2 2 . ,-i/2 ]/ )
- 2 (1 - / )2 s2 (6.56)

with

. (T) - 1 (6.57)

The above equation is separable and has a closed form solution; i.e.,

T~ 2 2 2-
-1a 1 '.T/71 2

S (t)- + f y 2 (1-. -T7 1 )

t ll

. 2 - 2 2 dt (6.58)
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.2

and S(t) is found to be

s(t) - 6r11 "
2 2 1122 + a2K12r2 lI"T 6, 1 2 + 2T3

""" e .27//.2S31-e (ii - /)- 3, 3 l(l a 2T*T/ 1
112

~C2  2  2  - 3 3 *,2f1T2
-a" rr22 1 /.1 -6T2 + 2T +3

12 2 T2e2 (6.59)

6,- GIr~r - j7)$~

-2 1  22 -1 1

f6r11 
2 r22 2 + a 2 12 222 j6T1l2T - 61 1 V +2T3 + 71 (-27T/r

-127 2 o 'I-a%2K2 rl12 [ 6r 2 2f-6 j
2 + 0T3

2. u2 -(t) G2 T()(t)x It)

+. 327r(12 -r (1 - f2 7 )Nl)/

22122( 2

(Cont 'd)
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F7 77

;6r112- 2 2 2 +a,1. 2 2 2 61  - 6  2. + 2-T3 + .12( - 27 / 71)

11 2 "2 T ) 22 12 ]
-121 a * a 2 r, 161r2 T-

3 I - 1 2- 12 r22 T e - (6 .61)

* and the secure payoff for player I at time t is

u J(U- 2 ) - 2 z T(t)S(t)z(t)

r- 32 22(t)/ 6r 1 1 
2r 2 + a 2K12r 2  16T12T

2 T3 3 '" T/T )  
2 T T i1

-611  + 27 + Tr (1 - 0 12T 1  Tos

2K a22 2r 2(i 2 +2T 3 -3 ( 02,, ,. ~ ~ -l , =1 16,r2 - 6, + T+ 3,= -. =

- 12122 Te'2 (6.62)

-The delayed comitment strategy for player 2 at time t is

given by

',u2 0(t) - G2 T()S (t)x 2 (t) (6.63)

which is simply equation (6.61) with x(t) replaced by z 2 (t). The

corresponding optimal strategy for player I at time t is then

" u 1 (t) - GT(t)s(t)^x2 (t) + CGT(t)XI(t) ;2(t) (6.64)

where n (t) satisfies,

* 104
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* lat). 2K 21.2 .

tt ef -2 (6.65)I (t rll12

with

! 1 (T) - I (6.66)

The above equation is separable and its solution is

+37"12T(1 -• 27T/ f 1  2 121"12 (667

I EHence, the optinal response for player I at time t to

2 -T/I..
" (t) -62 (2 T r r -3

1 1 1211 22 2

6r 112 T2 &X12T 22 6r1 -6)j T3( -T7

3- -2/' 2 (6 .6

Hence -the , otaene or laer 16 at t-m t6i

i::" +u (t) 6a1 T r1 l2 (l "- /IX()

+37 26 1= 36'17 ",.7 3  .(1 27T71 1222feTr 2
+ 6 + 2  6 +r (I -a W)

2,2 1 212 -2 3

2 105
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If we assume that the noise variance for our example is given by

coy j2 (t).V2 (7) j W2  (6.69)

and that the measurement matrix of player 2 is

12 - h2 (a scalar) (6.70)

then the expected secure payoff for player 2 at time t is

2 (u1  2  2 2(t)S(t) 2 (t) + 2 W(t)TN(t)(t)

+s~ 2 tr - s 2 - l
r 2 J PU U2") ") 2  doJ- 6T(T

222 -3r112r 2 2 (22 / 6rl12r222 + a2K 2r 2 16 2  -671y 2

+ 27T3 + 3713(l - e 2T/)- 127 2

a2K2r 2 722Y - 67 2  + 2T3+ 3 2(l e2T/721 2(

.127 2  2 I + 3r11 2  
2t 16r 12 + 2 12

"-22 -3-2T/7
167 1

2Y - 6 71 2 + 2T3 + 3r3 (I :

1l27 2l i j + -1tr NT a S s(a)I.

. 2 (s)h22 (8)w2 " do (6.71)

Note that ve could obtain the gain coefficients of the controls for

. player 1 and player 2 in the delayed commitment solutions in closed

form because all the differential equations involved in the computa-

tions are initial value problems. Furthermore, as can be seen from

Table 5.2, the coefficients of the filtering equations can also be pre-

computed, i.e., they can be calculated off-line, and are again simple

initial value problems.
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6.3 PRIOR COMITKENT SOLUTION

in the case of the prior commitment strategies, the gain matrix

for the error term in player I's control is coupled to the error

covariance matrix of the Kalman filter. Let us assume that the co-

variance of the error of player 2's initial estimate is

":: P0  p Po(6.72)

then from Table 5.1, the following set of simultaneous differential

equations are found for the second term in player 2's control and the

nature of player 2's estimator,

."__2_ -IT 2 22
2 2 "1" - -T//72 s'ft
2 a f/21 S(t

r2 2

a2 2 2  - " / 1 - +/T) 2S(t)(t)

22

2Ph h
4 - 1; (6.73)

N(T) -0

a222 2P2 h2
-2 1 1 _ T/71  - 2+(tJ-; 6.)

2 -2 2 1 a Ti 1  is (t) +M()(.4

P(t 0 ) - po

Note that we are now faced with solving a nonlinear two-point

boundary value problem. Experience has shown that such a problem if

solved directly is very sensitive to the error of the unknowns or

107



- .- . . . . _ .. . . - -. o . ..

guessed initial conditions. Frequently, the guessed value of the

misslng initial condition has to be practically the correct value

before the problem will converge. Hence, we have to resort to such

computational techniques as quasilinearization or invariant iabedding

to solve the above equations, thus greatly increasing the computational

load as compared to-simple initial value problems.

Leaving N(t) and P(t) undetermined, the optimal prior comitment

strategy controls are then given by

UT T

u (t) - T (t)S(t)x(t) + G, T )N (tJ2 (t)

m6&K Trr 2 2
2 ( I1 - -TT )~)

1 1 1 e

f 6r 1
2 r2 2

2 + a212r22  16712 . 6 T + 2T 3

3 '1 2 " -/ /Tl 2 (6. 75)
+ 3 (1-- 12T1 e j-a K2 r 2

116 -(-r22- T/22
.-S 6..2 7 6,.'2 . 3 3.3(l. -27/r2 To"2 '-,

+(1 - T - T/7)N(t)' 2 (t)

and

u'(t) - T A
2 -G 2 (t)S(t)x2 (t)

2 -/2
n6 2 T2 r 1 22 (1 2x2(0

~2 2 2 2 2 Tj + 2T3
6rt112r22 + a2 K1

2 r22
2 16712i - 6r 1 T 2 +

-- 3Tz3 2T/" 7 1 tz2- -7/71I+ 3 (I .2T T

(Cont'd)
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--- 6TROT- - ---- - 3 + - )

2. 22 2 - -2 +2T / 3 3 -2T/2*S-a r~ 1612 + 612 42 (I-

~ - -T/72I-12 (6.76)

The expected prior commitment payoff at time t is $ivesnby

j(ul ,u ) - I T(t)S(t)x(t) + ± 2T (t)~(t) 2 (t)-U I) 
2 x (t) (t) 2(l())+]

T t

2 2 2 2 22K2 21 -2
- 3rir 22 x (t)/ 6r 1 2r22  + aK 1  2 2  6112 - 6-1

+ 7-3 + 31 02T/7 12 T/ 1  2 2 2-2/ --//l'+2 6 + 3,r23 (1- a 2) 12ie j -a2i22r

T 2

+ t) I 2 t)+ ~ (s)P2 (.7

6.4 NUMCRICAL EAKPLE

In this section we present a numerical example of the pursuit-

evasion problem discussed in the previous sections.

2
In the selection of parameters, the specification of 

a 2

a - ril 2 and 2 - r222 in the performance criterion (Equation 6.33)

has to be such that the terminal miss is acceptably small, and pro-

duces tolerable levels of control for the missile and the aircraft.

A choice that frequently results in acceptable levels arel 231:
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a a2 [I-1 maximuis acceptable value of jXj' x 2

"r* 2 T x mximum acceptable value of u

1r22.. T x maximum acceptable value of u2

If we assume a final time T of 10 sec. and a maximum missile accelera-

ton of 10 G's, then r1l
2  ; .001(G2 - sec.) 1 . Similarly, for a

maximum airplane acceleration of 5 G's, r22 -004 (2

Assuming a terminal separation of 5 ft., a2  04 (ft.2 "1 . The

constants and parameters used are summarized in Table 6.1.

2 2
By assuming that r 11 < r22 we assure that the relative

controllability requirement discussed in Chapter 3 (Equation (3.86)) is

satisfied. From the equation for N in Table 5.1 and player 2'a

estimation equations in both the prior commitment and delayed commitment

solutions (Tables 5.1 and 5.2), we see that the range of possibilities

of the nature of information available to player 2 depends on the ratio
PH2 in the prior commitment or - in the delayed commitment
W2  w2

game. We have investigated the effect of the nature of the measurement

information of player 2 to the game by varying W2 over a range from

10 to 104 ft.2 .

To obtain the results for the prior commitment solution required

the solution of a non-linear two-point boundary value problem. The

quasilinearization technique was used to obtain the solution. It was

found that four iterations were sufficient to converge to the solution.

All solutions were obtained on a Control Data Corp. 6400 digital

computer using a fourth-order Rungse-utta integration technique with

t110



TABLE 6.1

CONSTANTS AND PARAMEIS USED IN A NUMERICAL EXAMPL E OF A

PURSUIT-EVAS ION GAME

T - Final time 10 sec.

t - Initial time 0 sec.
0

Kl  W 32.2 cosy NO - 32.2 ft/sec 2 _ 

K2  - 32.2 cos VTO - 32.2 ft/sec 2 - C

7 Missile time constant - 1 sec.

. Airplane time constant 2 sec.

a 2 - Terminal miss weighting factor - .04 (ft2) 1

r112  = missile control weighting factor - .001 (C - sec) "I

r 2 Airplane control weighting factor - .004 (G2  sac) -1

Po - Initial error covariance a 100 ft2

c4 "2W2  - hasurement noise covariance - 10-. 104 ft. 2

'111

!. .

.o,.......,-..-..-.. -.. ,. ..,.. . 4. . . . . ... " *e"- "" " - - = .s ." . . . . . . . . . . . . . .



. -.. ,- ' ' " . ' '- .. : 
° . '  

- ' .' - .-. .. " --.- . . - / . -.- ' .- - p." ' " ." - - "

an integration interval of .01 seconds. A listing of the computer

program is presented in Appendix A. No attempt has been made to

*: optimize the computer program.

The error variance of player 2, P2 (t), in the delayed cour itment

game is shown for various values of W2 in Figure 6.2. The error

*- variance, P(t), in the prior commitment game is shown in Figure 6.3

for the same range of values of W2. The delayed - and prior commitment

error variances differ at most by 3.2 percent.

The feedback gains G1 (t)S(t), G2 (t)S(t) and Gl(t)N(t) for the

- example from zero to 7.5 seconds are shown in Figure 6.4 and on a less

sensitive scale from 7.5 seconds to terminal time at 10 seconds in

" Figure 6.5. The curves for G1 (t)S(t) and G2 (t)S(t) are of course,

*. independent of W2 , but it was found that G1 (t)N(t) is also appropriate
24 2

for all values of W 2 in the range from 10 to 104 ft. 2 . Near the

terminal time G (t)N(t) is completely independent of W and varies
1 2

less than .1 percent at t - 5 seconds for the range of W2 indicated

above. This is clear from the equation for N in Table 5.1 which shows

that W2 effects N(t) through the term P/W2 and for the latter half

",* of the game P(t) is so small that W2 cannot have an appreciable effect

on N(t). Only near the beginning of the game does Cl(t)N(t) vary

*i with 12 but its value is so mall that it cannot be displayed on

Figure 6.4. At t - 0, the values for CI(t)N(t) are given in Table 6.2.

The curve for G (t) 1N2(t) - S(t) follows that of C(t)X(t)

so close as to be indistinguishable on Figures 6.4 and 6.5, the values

2
are compared at various times for 112 a 100 ft. in Table 6.3. After

t - 6 seconds, the two values are identical to four decimal places.
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TABLE 6.2

VALUES OF G 1(t)K(t) AT t -0

S2; G 1(0) N (0)

(c)1/2

10 .1864 E-05

102 .1432 E-04

10 3 .3416 E-04

.3944 E-04

TABLE 6.3

COMPARISON OF G (t)N(t) WITH

G~~ Is 1() (t)j FOR W2  10 F

TIM G I(t)N (0) G1 W jN I W - S W)

SEC. (SEC)- 1/2 (SEC- 1/2

0 .1432 E-04 .4013 E-04

.5 .2444 E-04 .4408 E-04

1.0 .3418 E-04 .4866 2-04

1.5 .4365 E-04 .5403 Z-04

2.0 .5313 E-04 .6037 B-04

3.0 .7394 E-04 .7714 E-04

4.0 .1014 E-03 .1026 E-03

5.0 .1443 E-03 .1447 E-03

6.0 .2252 E-03 .2252 E-03
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The difference between the prior commitment payoff, J, and the

delayed commitment payoff for player 1, JIB shows the dependence of J

on W2 and is defined in this paper as the relative criterion of the

prior commitment game. The relative criterion for the delayed commit-

ment game is obtained by taking the difference between J2 and J1 .

The relative payoffs for a W of 103 ft. 2 are shown in Figure
2

6.6. The relative payoffs are always negative, indicating a reduction

in player 2's payoff compared to the perfect information game. Further-

more, the relative payoff for the delayed commitment game (J2 " J1 )

is more negative than that of the prior commitment game (J - J

indicating the relationship between the payoffs as discussed in

Section 5.3 (see Figure 5.1).
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CU rAP 7

THE NOISY/MOISY DIF7U TIAL GAM

in this chapter we extend the presentation of the previous

chapters where either both players or only one player had perfect

state information to the case vhere both players have noise corrupted

measurements.

Since both players are faced with the problem of extracting

useful information from their noise corrupted measurements, and

neither player can determine exactly his opponent's estimation error,

we are led in the prior casmitment formulation to the addition of

correction terms in each player's controller and thus initiate the

vicious cycle of estimates of estimates.

The problem formulation for this chapter is as defined in

Section 4.1. The basic equations are repeated below, but for a more

careful definition the reader is referred to the above mentioned

section. The dynamic system is described by

x(t) - d- F(t)x(t) - G (t)u (t) + G2(t)u 2 (t)
dt

2 l(t) - H 2(t)x(t) + W2 (t)

The noise processes IV (t)I and IV2 (t) are white Gaussian, with

properties

120
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:. or I (t), V, (,r)] W, (t) 6 (t -r)

-Gov I2(t). v2(T) I W2(t) 6(t -(t

oy V(t). w2" " 0 (7.2)

For simplicity it in assumed that both players consider the initial

condition z(to) to be a Gaussian random variable, uncorrelated for
0

all t vith w (t) and w2 (t), and having a mean of ; and a covariance

coy [x(t0).x(to)j wo (7.3)

The cost functional or payoff to the Same is quadratic:

T T (7.4)

J (u1, 2  - Mx (xT)~x + f U u tu(t)dt -fuTtu(t)dtl

to t
0 0

The class of admissible strategies are restricted to those U1 and U2

which give rise to the feedback control laws

U1  : u I M U(Zl(t),t)

(7.5)
U : u aU(Z(.2 2 u2(Z2(t),t)

The delayed commitment strategy to the above defined stochastic

differential game is obtained in Section I for player I and in

Section 2 we obtain the delayed commitment solution for player 2.

7. 1 nM ED CCMT7M soTOi N FOR PlAYUR 1

* -"From the point of view of the minimizing player, player 1. the

performance criterion during the actual play of the Same at time t is
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(76

J (Uu 2  3 JX,(T)z (T)+ T(7),1jul'-(r)u)(er) - u2T(r)u 2 (r)J dr I Z1(t)
i., t

I-

and he obtains his secure strategy by finding the saddle-point solutim

to above equation subject to

x - F(t)x(t) - GI(t)ul(t) + G2 (t)u 2 (t) x(to) % o (7.7)

Similarly to our assumption in Chapter 5 we assume, for the purpose of

determining player l's secure strategy solution, that the allowable

strategy for player 2 in addition to being Z2 (t) measurable is also

Z1 (t) measurable. Thus. we want to determine that ul  U1 and

u2 t U1 z U2 which are optimal in the sense that for all t I 0eTI

J(u 1 ,u2) S JI(u 1 ,u2 *) Jl(ul,u2*) (7.8)

Hence from player I's point of view of a secure strategy, player 2

maximizes at t > t

I T
2 ax U2  x r)x(T) + f uT () u ) - uT()u 2(T)J dlr2t

Zt(t),Z 2 (t) (7.9)

subject to
(7.10)

X - V(t)x(t) - 1 (t)u1(t) + G 2(t)u2(t) X(to)
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But for arbitrary t - to U (t) and u2 (t) we can vrite the solution to

the system Equation (7.7) as

I T (7.11)

x(t) "(t't) 0 0+ f F #(T,1)Gl(T)ul(r) +#(T )G2 ()u 2 (T dr

where *(t,t o ) is the state transition matrix which must satisfy the0

relation

k..8(tt° Fl(t) #(t,t o0 )  (7.12)

9(t

0 I

Ranuce in terms of the lilbert space notation developed in Chapter 3

we can write

max T.l <+ T TXo + T2 u2 T u + T u
u2  U 1 Vx U 2  

1 1 2 2>

+ <u,ul> - <u 2 u2 > I Z1 (t).Z2 (t)j (7.13)

If we n define

P(t) Z I ( x - )T z 1(t).Z2(t)I (7.14)

where

R X~t I Z1 (t). 2 (t)j (7.15)

and consider the tarm I 1<91. ox>I Z 1 (t)Z 2 (t)jof Nquation

(7.13), then we can write for arbitrary t - to
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I <*x. *x. I Z (t),Z2 (t) " (*(x -E + X), (x - + Ax)
1 2

-.z 1 (t).Z 2 (t)J

- I<9(x - ).,(x -a)> + <#(x -,).*o>

n , - > I Z(t).Z2 (t) (7.16)

But, the two middle terms in the above expression are equal to zero,

while the first term can be written as.tr i. T .PJ thus

S<#xue#x> Z, Z(t)AZ2 (t)J I tr it <$,* (7.17)

and we can rewrite Equation (7.13) as

, <# T ^u + T . T 1u + T2u2 >0 12  1 21 2* 0d 1 22

+ <u Vul > < <u2,u2 > I +-ftr 1.T # 01  (7.18)
i22

However, tr I#T*p °0  is independent of the control u2, thus maximiz-

ing Equation (7.18) with respect to u2 (t) for arbitrary u (t) is

equivalent to maximizing J (u1 ,u2), where

J (u,,u2) 2 I T~u I + T2u2, u 2 TIuI + T2u2 >

+ <u19u1> - <u 2 ,u2 >J (7.19)

From the results of Chapter 3 we know that, whenever the inverse

of (I T2Tis*
of- ) exists, the candidate extremal control u2  La
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u2 T 2  - T2T2 ) xAo -Tu )

AA

[Z =T 2 D2(x o  T TUl) (7.20)

Furthermore, the linear-Gaussian assumptions imply that can be

generated for any time t by a Kalman-Bucy filter using a prior estimate

A
of the initial state, x o, a prior estimate of the variance of the

error of this estimate, Po, the noise corrupted measurements zl(t) and

Sz2 (t) of the state up to time t and the dynamic equations

" (7.21)
A A-(t) - F(t)x(t) - GI(t)ul(t) + C2(t)u 2 (t)

,-l- : A~t . ...[,u,1 (t),, [t)J[ A
0 o l 't Z 1 t) A t

* with

A

and
T (7.22)

;(t) - F(t)P(t) + P(t)F (t)

P "l(t) IN I(t) R2T(t>J L ----- !!,,, ~t

-,-l

- 0 W

with

P (t 0 )-
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Thus we can write

S2 "T 2 (D2 ( 0 k T u1) (7.23)

Substituting Equation (7.23) into Equation (7.6) we obtain as

payoff functional for player I at arbitrary time t - t0

2. Te x~* A A o(U)- E Iw#o - l u + T2~ D (#X0 - T u ), #x0 -Tu

+ T2T2 *D2 # - T1U -)>+ <u 1 ,u l >- <T 2T2 D2 (01, - Tlul),

D 2(#X - TIuI)> I z J (7.24)

which player I seeks to minimize.

If we define

P e f(x - z1)(X- )T IZ,1(01

where

Et jxt Z() and recalling that the double expectation-

first given more information, then less information (information is

taken away) - is the same as the expectation given the less infor-

mation only see (24 1, then we can write J (U1 ) as

1.: 1 j<p A~l A22D A, Tl .
1 (ul) -y - T uI +T 2T2 D2 (9X1  - T1u1). o O T1 u1

0 00

A A

i,-, !...+ T TT2D2(#x~l T Tu )>+4<ulgul>- <T2 D(0 XA - T Ul)

T2 D2(f Tuli)> I + . tr (# 9  1 ) (7.25)
10 1

Minimizing the above expression with respect to u (t) is equivalent to

minimizing :i1 (u,) .where
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I(u) 2 IEOX -Tiul + TT D(.A T- ),#X r11 2l 21 2210 11

AT2T2  A -T 2 T2 D2 (9x -Tu 1 ),
+ D (0 x T u1 )> + (u1,OU <2T)x

2 0 0

D2 (0 Si - T 1 u1 ) >j (7.26)

Again drawing upon the results obtained in Chapter 3, we know

that the minimizing control for player 1 is

'U = TI fi+-TT 1  -T 2 T2 -1
.~0

*A
-

T ID Ox 1  (7.27)
0

The dynamic system from player I's point of view can then be

written from Equations (7.7) and (7.21) as

(7.28)

1G2 2 T D2.o

N F G TD P TW PH TW -1" F, + 22T2 D2 2 ii1T'1 1 - 12 2 1 2' ,X

with initial conditions

xlto,) " i
-0 (7.29)

" (to)*
.- 0 0

and with measurements
) 1(t) c(t) +w 1 (t) (7.30)

i. 127
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It then follows from the linear-Gaussian assumptions that the optimal

estimates of x(t) and O(t) given Z1 (t), i.e.,

-I(t) - E -x(t) I 1 (t)

- + -(t) 1Z (t)f -

are obtained from (7.32)

FA

[ 2j 2 2 G2 T2 D2  21i21 1 A
G 1  + G2 D2 T1 1

"i Ul~ [0]

12 1 +2TW2*D 2 2* PI I" 1 N 2T12

G+ G T * D T 0

~12 P2 2 1 -i + [ ' ~11  12 1 '' o 1 1 11-.xl

with initial conditions

A 
;1(t0) (7.33)

A: 12 ( ) " X 0

128

- . .* -• . . . . ,• ._ - ..-



vhile the error covariance matrix satisfies-.
P 11 P 12] [ G2T2*D29 j

--------- -- - - - - - - - - - - - - - - - - -

P12 P2j 2 T1 111 2 F+G2 T 2 D 2 0 -PHII R1 H

Pit P 1 2 r 1 12 IT I

•II

1l2 P22 12 P22  2 "W2 2H

G 2T2*D 2*

F+G T *D2  -P01 P 1 TW 1 -Pn 2 TW2 12 012

i-i

~12 22 oJ 12 P22J(.4
with

1I(t 0  (7.35)

and the corresponding optimal response of player 2 is then

u 1 2 T2 *D2 #xTI (7.37)
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K. The Kalmn-Bucy filter (Equation (7.21)) and its corresponding

error covariance matrix (Equation (7.22)) can be simplified by the

following observations. Rewriting'the conditional estimates (Equation

(7.32)) we obtain

I + G2T 2 *D* 2 pA C~ + 2T2 D2 T, 1JU

(7.38)

+ 1 HTV 1 - NII ~ 1 (t 0 ) v-

and

A "A*(7.39)

x"+ G T D2  - G + 1T DT
12 12 22 212 1 22 2  1

+1 T~ -1 ~ J + mT2-wl Az

+ PT22"2A -W H2J 2 "H2x1 2  (to) m

and we observe that, since

E(t) x Z(t)f m x 1 2 (t) E E Ix )Z 2 (t)Z2 (0 1 t) (7.40)

it implies that

t (t)  
1 (t) - P(t) + P (t) (7.41)

12

and thus

p 11 (t) - P(t) + Pl2 (t) (7.42)

1" 1
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Using Equation (7.42) we then obtain from the error covariance

matrix (Equation (7.34))

11 + 1T D OP T

F12  12 222 22 P"11 H 2 22P + P12

12 '12 2 21211 1 '12 2f TDTWl2 2. 2 1 2P

''l' 2 -12 .12HI.1 1 H. ; P12(to) 0 (7.43)

and

vhere the last equation siLmplifies to

P22 "22 + ,,T'2*D2 *P22 + P2,.."TW2'l"2P + 22 22 F

+ 1 22 IGT* 7 2 1 F22 "ITWI 1;T-

S2 * 2 -j ",,, 2 21,.,2"1lH2

PH1TV-1 HIP22 P12HIT2 ; P22 (t) - 0 (7.45)

Comparing quation (7) vith Equation ve s ha

P 21 , 122(t:) (7.45)
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Thus the Kalman-Bucy filter and its error covariance matrix Equations

(7.32) and (7.34) respectively, reduce to

"1 (F + G2 T2 *D2 )X (C1 + G2 T2 D2 T )u

P1 1 W1 1'( h - A --(t (7.47)

and

T ++* T1P "FP 1 + PF + G2 T2 *D2  P1 2 
+ P1 2 (G2 T2 D2 9 )

..12 - P11H1Tw1'H1P11 1 +P1 (To) - e (7.48)

l11l 1 W11 12 I ~ P 1 1 + 11 1 11P FP + P2 F G T D2 T

12 12 12 22 H'2 1 2  H12  - P12 '2 2

TW Hl P tm (7.49)H

+ P1 2 H2 TW2 " H2 P1 2  P12(t 0 0 (7.49)

The above results can be written in terms of solutions to matrix

Riccati equations. It was shown in Chapter 3 (Equation (3.87)) that

T1 D x 1 can be written as G1T (t)S(t)AX(t), where S(t) satisfies

* . Equation (3.98). In Chapter 5 we found (Equations (5.55) through

(5.61)) that TI*D 1 O could be written as G T(t)N (t)W(t). By a

* A
completely parallel argument we can show that we can write T2 D29 x as2"2.2
T

G 2 (t)N2 (t)o(t), where N2 (t) satisfies
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"2 (t) = - N2 F(t) - N G (t)G2 (t) 2  ; U2 (T) - I (7.50)

"" If we further define

R 2 (t) ,(Tt)D (t)R (t)D(t) # (Tt) (7.51)

where

121(t) T1T* (7.52)

then on taking the derivative of R2 (t) with respect to t we obtain by

using

- (Tt) - -? (t) 9 (T,t)
(7.53)

S(T.t) - • (Tt)F(t)

R 2 .- T TD2 R2 1DO -" 2 C 2G 2 * 2
D

" *TD2* GIGIT #TD# + 4 D2R2 1DOG1G1
T #TD#

2- ITDD G2G2T,#TD# - *TD212 D*F (7.54)

Substituting Equation (7.51) and the defining equations for S(t) and

'" ~N2 (t), e."

S (t) T *T(Tt)D(t) Cr,t)
(7.55)

S2 (t) 0 T(Tt)D(t) (T",t)
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the resulting equation to

'- R2 - - R2F(t) - FT(t)R2 - N2G2 (t)G2T(t)R2 - 12 G1 (t)G 1 T(t)S

+12 R GL(t)Gl (t) - G2 (t)G2T(t)j S ; 12 (T) - 0 (7.56)

From Equations (7.36), (7.47), (7.48) and (7.49) the optimal

delayed comitment strategy for player I is then given by the follow-

ing set of equations

u1 (t) - 1T (t)S()o (t) (7.57)

(7.58)
S-- SF(t) - FT(t)S + 'S GI(t)GT -(Tt G 2 ; S (T) M I

(7.59)

T T

- l( - (t)P1  + G ( )t) + G (t)G (t)P + (t 2-G (t) 2 (t)02  (t)

T -1+ P 1I (Ow ) (t) (t) (t) (

P12  " F)PI W12  ()Xl (t)+t P t)Wl 1 (t (t)G 2 (t)

- 1 T+ P 1(t) 1 (t)+ 1 (tT 2  + ? 2 HT (t) 1 2 (t)

T -1 -

+ P12H1T(t)2 1 (t)Hi(t)P 12 + P ll2 T(t)W2
- I (t)R2 (t)?ll

- I1l2 T(t)W2 -(t)H 2 (t)P12 - 12 12 T(t)V 2 - (t )12(t)11  (on'd
(Cont3d)
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T -1+ 12'2 (t)w2  (t)H 2 (t) 12  ; 1 2(t) - 0 (7.61)

2 .2' 2 2 2  (t)N2  2; (T) I (7.62)

a t) T T
2 - .12 (t) - FT(t)1 2 - N2G2 (t)G2 (t)R2 - N2G1 (t)GI (t)S

+ 2 j1 ()1 1(t) G2WG (t)GT (t)J IS R 2 (T) *0 (7.63)

Note that the above matrix liccati type equations do not present a two

point boundary value problem but can all be solved using either for-

ward - or backward integration. This solution can take place "on-

line" vith a digital computer during the actual game.

7.2 DEIAYED COITMM SOLUTION POR PlAYER 2

If ve nov consider the game from the point of view of the

maximizing player, player 2, his performance criterion during the

game at time t is
(7.64)

• T

.T2(1,u2  (T + f'c~xr + { T M.u (r) - u! T (t)u (T) JdT Z2 z(t)
t

and his secure strategy can be determined by finding the saddle-point

solution to this equation subject to

x - F(t)x(t) - YO(t)uI(t) + G2 (t)u2 (t) ; x(to) - 0o  (7.65)
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To determine player 2's secure strategy solution we assume that the

allowable strategy for player 1, in addition to being ZI(t) measurable,

is also Z2 (t) measurable and we seek that u2  U2 and u U1 x U2

which are optimal in the sense that for all t to,T

J2 (UlU 2) .< J2 (U1*,u2*) J2 (Ulu 2  ( 7.66)

By a completely parallel argument as used for the solution of

the game from player l's point of view, Equation (7.23), and replacing

max. by min. and player I by player 2, we obtain as the candidate

extremal control for player I

uI = T1 D 1 (#X + T2u2), (7.67)

with the Kalman-Bucy filter given by Equations (7.21) and (7.22).

Substituting Equation (7.67) into Equation (7.64) we obtain as

payoff functional for player 2 at arbitrary time t - t.0

1 A*A A
S 2(u2) 000 " T T D1 (x

o + T2u2 ) + T2u2,xo

T T-ID( 0 + T2u2) + T2u2>

:~i 1j : 2u2 D1 9Q 0 T2 2 >b .' + <uu2 z 2(t) (7.68)

"4
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-

where

02(t) 1 x(t) Z2(t)j and again recalling that the double

expectation first over a "finer" and then over a "coarser" set (i.e.,

containing fewer sets or less information) is the same as the expecta-

tion over the coarser set, we can write

,s." 2(u2 iI<*1 - T1 TD( 2 o + T2u2 ) +Tu2

- T IT *D (X + T2u2) + T

2+2T 1 *Dl(9X 2 o + T 2u2 ), T1 D( 2  +2 u2

" <u2u2 I + 1- tr( qtP 2 ) (.9

From the results of Chapter 3 we then obtain

0

* A

u2 = T2 I TTI D"(X T 2T 2 ) +2u2

2*Dx +Tu0

1 1 2 2  (7.70)

0 

0

Fo The dynamic system from player 2's point of view can now be

' 'written from Equations (7.7) and (7.21) as (7.71)

IA

' 2  T 2I1 IT [ 0 01
T 2 D 2 (7.70)
- G 1T1 DIT2 G L 2 1

4
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with initial conditions

x (to 0 0o
-) :(7.72)

x(to) . x
0 0

. and with measurements

z2 (t) - R2 (t)x(t) + w 2 (t) (7.73)

The linear-Gaussian assumptions assure us that the optimal

estimates of x(t) and X(t) given Z2 (t), which are denoted by x2 (t)

and A2 1 (t) respectively, are available from21^
x F G T 9

PH T * - IH H
I21J1 1F J1 1 9 1 II 1 1 H 2TW 2 21

* . G2  1 G 1 1  2
+ u + z

2 2F GCT1 D T P
2l 1 1 1 2 [ 2

+ (7.74)

P2 P2 0 0 0

with initial conditions

- 2 (t) " K (7.75)

A
x 2 1 (o 0 o
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vth the corresponding error covariance matrix

1 11 21- FGI T 1*Di
P2 .------------ -------------------------------------

P- 121 P22 P . : F G1 T 1 D 1I1H1TWI 1- H2 22

S1 P 21 11 ~ 1 Fi~y

Pll P2 1  P11 P2 1  F

P2 1 P2 2 "21 P22 P1 1 1:

"-C 1*D1  T 0 0
,-G

1
T

1
G T D-F

---- -----

P21 ' " 2"  °0 P11 P21

- [: z: [H2:2 112 ] [(7.76)': '~21 P22J o , 21 "22 (.6

j-.. L

with

.:- Po 0

P (t (7.77)
2 0

The optimal control for player 2 is thus

"2- T2 AD *x 2  (7.78)
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-. vhile the corresponding optimal response of plyer I is

u1  - T1 D1  x + T1 D1T2T2 D (x2  (7.79)

The Kalman-Bucy filtering equations (7.74) and (7.76) can again

be simplified by rewriting the conditional estimates, Equation (7.74)

as

A A * A
x 2  -T GIT1 I  x21 + (G - GITID1T2)u2

1 A-

+"P1 1 + 2TVH2 2  (z2 - H2x2) ; x2 (t) x (7.80)

and

*A

.2x1 2 1 1  1 - GT 1D1T2 ) u2

F 21 H2 2 142  2 + PH2T2 (z 2 2

1 P1 W IRA (7.81)"+ PH 1 Twl' ~ 1 H"I"2 1 1 o2 -2 (7.8o)

then since

x2 (t) Rj x Z2 (t)I X 21 E EI x Z(t)Z2(t) I Z2 (t)j (7.82)

we find that

t- () 1 (t) - P(t) + P2 (t) (7.83)

thus

P1 l(t) - P(t) + P2 1 (t) (7.84)

14
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Using Equation (7.84) we obtain from Equation (7.76)

P21 " FP 2 1 " GITI*D1 * P22 + PLIHITW 1 
1H P + 2

;- P2 1 [G 1T1 DIOF - P2 1HITWI "P P H2 P

. 'H2T2 "l2P21 P2lH2T 2 "1H2P2 1  ; P2 1 (to) " 0 (7.85)

P22 " P' 1PTW 1 1P21 + - G1TI*D 1 gP2 2 " PHT 1T 'IH 2 2

P2 21 2 1 F22 221 1 1 222
I'-:M . 2- lH2  - P21"TW1-'lp + P22FT

- P22 1L 1 1 DI9 - 2 2HRTW HP2H2 2

+ PH1 TW1 'H 1 ? - P2 1 H2 TW2 "H2 P2  ; P2 2 (to) - 0 (7.86)

vhich simplifies to

2 FP 22 - GIT 1 DI 22 + Pl l Il- +

-P22 01 T I DI pJT - 2 HT 1 H P22 2T "

+PHTlH TW1-lj l2+PH12I 21 " 1 H2T 2l ; P2(to) "0 (7.87)

Then comparing Equation (7.85) with Equation (7.87) we observe that

'21 P2 2 (t) (7.88)
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A and we can write for Iquation (7.80) and (7.76)

A2 - (F - G T1 *D A + (G2 - G*T1 DT 2 )u2

2 -1 A( I Ato)

+ ?11H2 V 2 I ; x2(t) . 0  (7.89)

and

p +t FP11 11 F - GT ID*DP 2 1 -P 2 1 ( 1 T ID 1 )

vhe2 2112 (t)P (7.90)

p2 - + 7 T - GT 1 D1 OP 1 - (G T1 *D .T

+21 "1 +V' 1 he sP 21 1
21 1 1 1M2

1 1121 I 1 WI-l HP2it - 11112 V2 I W - 21 -i~T1 R2~a 25211

T p~ _-1H2 1

+ P'2 IH2 TV2 -1 2P21 P2 1 (t) 0 0 (7.91)

If we define

T
R (t) *(T, t) D,(t) R (t) (t) 9(rT (7.92)

where

R 12 (t) TAT

then using

*T (T,t)- pV (t)* # rT)
4 (7.93)

T T
*(T.t) .0(Tt)7(t)
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ve obtain after taking the derivative of R (t) with respect to t

.II T T T T T
R - F9 2D + 0 D1  G 1 01 9 D 1 R12DO

T T T T T

=" . 4FT-D19 G2 G2 T9 TD9 +0oD 1 R1 2 D9GG 1
T 9D9

S- 1TDR 12 DG2G2T 4TDO - #TD1 R12D*F (7.94)

Substituting Equation (7.92) and the defining Equations for S(t) and

N1 (t), .i.e.,

S (t) T 4F(T, t)D (t) # (T, t)

(7.95)
N: I(t) T T(T, t)D1 (t) 0 (T It)

we obtain

-T T TR 1 R1F(t) - F (t)R1 + NIGI(t)GI (t)Rt " N1 G2(t)G2 (t)S

+ R G ( t)G I T ( t) - G 2 (t)G 2 T(t) jS ; R1 (T) - 0 (7.96)

Using Equations (7.95) and (7.96) in Equations (7.78), (7.86),

(7.87) and (7.89) the optimal delayed comitment strategy for player 2

is then given by the following set of equations.

u2 (t) - G2 T (tS (t 2 t) (7.97)

(7.98)

T T TT

" F~)- Tt) " +S IG1 (t)G 1 T(t) "-2tG2~) S ; S(T) .1

2 (t)- jF(t) - 01 (t)GI (t)NI(t)+G2 (t)G2 (t )9 (t)- GI (t)o (tR)R(t )X2(t)

+ P,1 2T "t)(t)V2 ( [ 2(t) . H(t) -)H 2 ( ; I 2 (t,0)-;o (7.99)

143

. . . ,



T Tel"F(t)Pl + P 11P7 (t) - CI (t)GIT(t)N I (OP 21 - P2 NJ (t) tG 1 G (t)

?102-T( ) 2"(t)B 2 (t)P?1  ; ili(t 0 ) M P (7.100)

i2l " F(t)12 1  
T (t) - G(t)G ) (t)N (t)P 2 1 _ P2 lN (t)(; (t)GT (t)

2 + P T(t)W -1 (t)H (t)

+P11 t 111R (11 - P itHl1(t)wlI (t)U 1I(OP12 1

- P2 1HIT(t)Wl (t)IH (t)1ll + P21" 
T (tW C (t)H(t)P2 1

- PllH2 (t)W2 -1)(t) t)P21 - P2 1 2
T (t)V2" (t)H2 (t)111

+ P21"2 (t)V 2 " (t)fl2 (t)P 2 1  ; P2 1 (t) - 0 (7.101)

NJ" Ml N " F(t) " iT(tON + N OlM (T) = (7.102)

R " I F(t) - F (t)R1 + NIGI(t)G I(t)R 1 - NIG 2(t)g 2 r(C)S

+ R1  G G1(t)GI ( t ) - G2 (t:)G2 (t)f s ; R ) - 0 (7.103)

The above solutions for player 2 are very similar to those

obtained for player 1 and are "simple" in that they can be directly

solved using forward and backward integration with a digital computer.

Recalling that Willman 1 8 ) showed that for the class of games

discussed in this chapter,the strategies could only be realised with

infinite dimensional dynamic systems, we observe that the point of

view of delayed comitment strategies leads to solutions which are

readily computable.

.:', , , . .. --.---. 1 ..4
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CRAFTU 8

SUJIARY, CON3CLUS IONS, AND

SUGGESTIONS FOR IUTURE WORK

In this dissertation the problem of prior and delayed commitment

strategies to differential games with noise corrupted state measure-

ments is discussed. It is pointed oct that the prior commitment

solution, which has led previous researchers to define the closure

problem, is valid only under restricted circumstances.

The delayed commitment solutions are then obtained for a differ-

ential game where one player has perfect state information and the

other player has only noise corrupted measurements of the state and is

extended to a differential game where both players have noise corrupted

measurements in Chapter 7. In both cases, the resulting secure

strategies do again satisfy the familiar Separation Theorem of

stochastic optimal control.

Of particular significance is the fact that the governing

equations do not result in an often difficult to solve non-linear two-

point boundary value problem, but are readily computable with a digital

computer.

A detailed example of a pursuit-evasion game is presented in

Chapter 6. It discusses a missile and an airplane system where the

missile (or player 1) has perfect state measurements and the airplane

(or player 2) has noise corrupted measurements. Both the prior commit-

sent and delayed commitment solutions have been obtained and the results

compared.
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An Immediate and direct extension of the research presented in

this dissertation is to extend the results to differential games, where

in addition to noise corrupting the measurements, additive white

Gaussian noise, independent of the measurement noise and of the initial

estimate of the state, is present in the system dynamics. Of course,

if the noises are not white but 1arkov with rational spectra, they can

be modelled as outputs of a dynamic system which is driven by white

noise and by adjoining this dynamic model to the system equations an

augmented system is obtained with white noise disturbances.

From the game theoretic point of view the realization that the

zero-sum assumption has to be abandoned during the actual stochastic

game offers several interesting analytic and conceptual concepts not

found in zero-sum differential games. We have used the minimax

solution concept, however, non-inferior (or Pareto optimal) strategies

or solution concepts involving coalitions, bargaining, etc., can be

envisioned.

Yo4
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APPENDIX A

-COMPUTER PROGRAM LISTING FOR THE NUMERICAL EXAMPLE OF SECTION 6.4

- UASILINIARIZATION ITERATION I

SUBPOUTINE FUNEV
COMMON TIMEDELTNSTARTNFIRST.NEXIT.IPASSROMCON(2094)
REAL KlIqKKTI9KT~sNvNO
REAL N09NP1DNPl.NHIONHI
DATA TFASKT) ,KT2-TAUI ,TAU2,R1ISPR2?S/1O...O4,32.,32.2. lo*... 

119,004/
IF (NSTART) 30.50. 10

10 READ(5920)NPI*PP1,9V?gNH19PH1
20FORMAT(C4E20 .0 )
CALL INTG(NPID*NPI)
CALL INTG(PPlD9PPI)
CALL INTG(NH1D.NMI)
CALL INTG(PIIDPI
CALL PRINT(L0I S(T)qIOHvG1~o4 q.190)
CALL PRINT(1OH NPID91OHGla.4 gNP1D,390s)
CALL PRINT(IOM NPI #1OH,61294 ONP1910)
CALL PRINT(IOM PPIDIOM.G12'. 9PPIo.3%0*)
CALL PRINT(JOM PPI 1 ,lH9Gl24 oPPI.1,0.)
CALL PRINT(IOH NHID91ON9G12.4 .*HID*390o)
CALL PRINTIlON NMI oIOH.G12*4 eN'II.I.0s)
CALL PRINTO0tI P'$1D91OM.G12*4 sPHID9390s)
CALL PRINT(ION PHI 91OM.G1Z.4 9PH9190l0)

30 CALL PPINT(IOH KI(T)910H9612*4 VKIV5.06)
CALL PRIt4T(JOM K2(T)o10HG12*4 VK2,50O.)
PETURN

S0 TGO=TF-TIME
Tl1 .-EXP (-760/TAIJ) -TGO/TAtJI
T2=1 -E EP(-TGO/TAU2 -TGO/TAU2
S=6.*RIIS*2S/6.*RIS*ZSAS*KTI**2*R2S*(6.*TAU1**TGO-6.*TAU

2&O*FxP(-TGO/TAUI) )-AS*KT2#*?*RlIS*(6.*TAU2E0?OTGO-6.*TAU2*TGO*22

40/TAU?) )
KI=AS.Krl..&'.TAiJI..?eTl*?/RI Is
K?=ASOKT2***TAI2**?*T2**2/R?2S
P0=)000.*EXP(-.*TIME)
NO=-00000 1
NPID=2**(K1*NO.K1@S4P0/WZ)*NP1.2.*NO@PPI/W2-K1*N0*N0?.*NtO*PO/W2?.K
12*S*S
PPIDs-2..K1'PO.NPI-e.'IK).NO.K1.S.PQ/W2)*PPIOP0*PO/W2.2.*KI1N0'P0
N1)2.* (K)*N0.Kl*5.PO/W2) *NHI#a.ONO*PHI/W2
PMID=-2.*KI*PO*NHI-?.*(K1*NO.KI#S.P0/W2)*PHI
IF (NFIRST)60,80*60
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. . . . .. . . . . . . .

60 Al1-NPI/NHZ
WRITE (6970) NPI .PPI .W2vAI

70 FORMAT(1NO.4X94N 614*6*5N,4NP G 14.69SX*SHW2 6 149695MAJ
luG2?*14)

AO RETURN
END

-ITERATION 2

SUBROUTINE FtJNEVS COMMON TIMEDELT.P4STARTNFIRST.NEXIT, IPASSROMCON(2094)
REAL KlK29KT1,KT?9N9Nl
REAL NONP1.NPIoNtHt1,?*1DNP2.NP2DNH2.NM2D
DATA TFASKT1 ,KT2.TAUI ,TAtJ2,R1 1S.P22S/10.,,04.32,2932.2. 1. .2.,.00

K- 1I,.004/
IF (NSTART) 30.50.10

20 FObRMAT(4E2090)

CALL INTG(NPIDoNPI)

CALL INTG(NP2D9NP2)
CALL INTG(PPeDgPP2)
CALL INTG(NH2D*NH2)
CALL INTG(PH2D*PH2)
CALL PRINT(I0H S(T)*IOH9G12.' oSo1,0.)
CALL PRINT(I0N NPIDIOHG12*' 9NP1D9390o)
CALL PRINT(1ON NPI 910NG12S4 oNPI190*)
CALL PRINT(0II PPID910MG12.4 .PPID*39O.)
CALL PRINT0lON PP1 *1ONGI294 OPPIg1,0.)
CALL PRIPJT(1OH NP2D91ONG12*4 9NP2D3909)
CALL PRJNT1ION NP2 ,IOH9G12'. oNP29190.)
CALL PRINT(OHM PP2DIOHoG1?.4 9PP2D*3*0o)
CALL PWINT(1OH PP2 91014,612.4 ,PP0190)
CALL PRINT(1014 N1420,10H.612e4 ,NN2O.390s)
CALL PRINT(10I Ns42 91014612.4 oN1429190*)
CALL PRINTOI0I P14?D*10N.G32*4 *PH2O.390e)
CALL PIWINTl0N P142 91ONG1?.. OPH29190)

30 CALL PRINT(0MH 11(T)9l014,61?.4 9K1.5.09)
CALL PRINT(OOH K2(T)910M.G1294 oK295.Oo.
RE TURN

50 TGflTF-TIME
T11 .-EXP(-TGO/TAUI)3-TGO/TAUI
T2=1 -EXP (-TGO/TAZ) -TGOITAU2
Sx6.*RllS.R22S/(6.*R1ISOR22S.AS.KTI..2*2S(6*TAt100?*TGO-f.*TAU
11.TCO*22..TGO..3.3o.TAUI..3.(1.-FXP(-2.eTGO/TAUI))-12.oTAU1O.?*T
2GO.ExP(-TGO/TAU1 )-AS@KT2.O2.RIIS.(6.OTAU2O*2'TGO-6..TAUZOTGO*O*?
3..VGO..3.3.*TAU2..3.(1.-EXP(-2..TGO/TAU2))-12OTAU2**2*TGO*LXP(-TG
40/TAU2) ))
K13AS.DKTI@@2*TAU1l**2@T1@O2/Rl1S
K23AS*KT2**?*TAI)2**2*T?'*2/R22S

IS



PO=1000**EXP(.5@*TIME)
NPlO:2.*(K1@N0.K1*S.P0/W2)*NPI*2.*N0*PPI/W2-K1*N0*NO-2.*NO.P0/W2.K
12*S*S
PPIO=-2..KI.PO.NP1-2*(K1.NO.K1*S.PO/W2 *PP1.POPOp/WZ22KI.NO*Po
NP2Dz2.*(K1*NP1.K)*S.PPl/w2)*NP2**NPI*PP2/W2-K1*NPIfNPI-2.*NPI.P

I 1 PI/W2.K2*S*S
PP20O-2..K1*PPI.NP2-2.*(K1.NPI.K1*SPPI/W2).PP2.PPI.PPI/W2.2..K1.N

N42D:2.*(K1'NP1.KI'S.PPI/W2)*N142.2.*NPI*PM2/W2
PH2O=-2..K1*PP1-NH-*(K*NPK*SPP/W2)*PH2

* lU(NFIRST)60980960
60 A2=-NP2/NH2

WRITE(6970)NPI ,PPI .W2,A2
70 FORMAT(IHO,4X944N * 1496,5X94HP Gl4o6*5X,5S4W2 z 614e6.51A2

l1G22*1.)
80 RETURN

END

-ITERATION 3

SUBROUTINE FUNEV
COMMON TIMEDELTNSTARTNFIPSTNEXITIPASSROMCON(2094)
REAL Kl9K29KTI*KT2.N9ND.
REAL NONPLNP1ONtlot4H410,'P2,NP2D.,g2NZ2
REAL NP39N1439NP3D*N1430
DATA TF.ASKT1,KT2,TAU1,TAUZRllSR25/l0.,.04,32.2,32.2,1.,2.,.00
11 * 004/
IF (NSTART) 30950910

10 READ(S,20)NP1,PP1,d2,NP2,PP2,NP3,PP3,NH3,PH3
?0 FORMAT(4E20.O)

CALL INTG(NP1D.NPI)
CALL INTG(PP1D*PPI)
CALL INTG(NP?DNP2)
CALL INTG(PP2OPP2)
CALL INTG(NP3D*NP3)
CALL INTG(PP30,PP3)
CALL ItTGlNM3D9Nl3)
CALL INTG(PI3DP43)
CALL PRINT(I0N S(T)*.1012*1?4 eSs1.0.)
CALL PRINT(101 NPID*10MvG12*4 *NPID9390e)
CALL PRINTCOM NPI 010HOG61?.' ONP191906P
CALL PRINT(1014 PP1D910M12*1?4 9*P1O,390*)
CALL PRINTfl~ti PPI .1014.612.' opp1,1,0.)
CALL PRINT(ION NPD,014,61I2 9NP2D,390.)
CALL PRINT(1014 NP? q1014,6)2.4 oNP29190s)
CALL PRINT(ION PP2D,10MG12*4 9PP2D*390*b
CALL P'RINT(1014 PP2 vl0I1,Gl~o4 OPP291909)
CALL PRINT4ION NP3O,01N91294 oNP3D,390*I
CALL PRINT(1014 NP3 *.109,612.4 *NP3*1909)
CALL PRIt4TIIOH PP3D9I09Gh?e4 *PP3D,390*9
CALL PRINT(OM PP3 .10H9,61?294 *PP3*1909)



CALL PRIV )ION NH3DoIOHGl2'. .1*430,39.)
CALL PRIt4T(LOH N*43 91OH9GIZ.4 eNt39190O
CALL PRINT(ION P1430910H9612o4 oPH3D939O*.
CALL PRINT(10$ P143 *1I4,61294 9P1439190s)

U30 CALL PRINT(IOM KI(T)*10N,61294 *KT1.590*b
CALL PRINT(IOH K2(T)91ON.G12*4 *KT2*5,09)
RE TURN

50 TGOzTF-TJME
TIOI*-EXP (-TGO/TAUI)-TGO/TAUI
T231 .-EXP (-TGO/TAUZ)-TGO/TAU2
Szb.*RIIS*R22S/(6.*R11S.R22S.AS*KTI.*2*R22S*(6.*TAUI*.2*TGO-6..TAU
11'TGO.*2.2.*TGO4.3*3.*TAUI'*3*(1.-EXP-2.TO/TAU13')-12.*TAUI..?.T
2GO*EXPe-TGO/TAUI))AS*KTZ*2*RIIS*(6*TAU2*02.TGO-6*TAU2*TGO..?22
3..TGO..3.3..TMJ2*.3*t.I.EXP(-2.*TGO/TAU2))-12.*TAU2*.2.TGO.EXP(-TG
40/TAU2))
K1=AS*KT1O*ZOTAtJl**20Tl**U/PI 15
K2=AS*KT2**2*TAU2**2*T2**Z/R22S
N0=-.000000015
PO=1000.*EXP(-e5@TIME)

12*S*S
V PPID=-2.@K1*PO*NP1I?.* (K1*NO*K1*S*PO/W2) *PPJ.PO*PO/W2.2.*K1*NO*PO

NP2O2.(K1*NP1.K)*S.PPI/W2*NP2.NPI.PP2/W2-K1*NPI*NPI-2.*NPI*P
IPI/W2+K2*S*S
PP2D=-2..KI*PPI*NP2-2..K*NPI(1I*S.DPP/W2).PP2.PPI*PPI/W2.2.OK1*N
IPI*PPI
NP3D=2.*(K1*NP2,K1*S.PP2/2)*NP3#?.*NP2PP3/W2-K1ONP2eNP2-2.*NP2*P

IP2/W2*K2*S
PP30=-2.*K1*PP2*NP3-2.*(K1*NP2,K1*5.PP2/W2)*PP3.PP2*PP2/W2.2e*K1*N

IP2*PP2
N130=2.@(K1#NP2.KI*SPP2/W)N43.2.*NP*P43/W2
PH3Dz-2e*K1*PP2*N143-2.*(K1*NP2.K1*%,PP2/W2)*Pi3
IF (NFIRST)60980960

60 A3=-NP3/N43
WRITE (6970) NP) .NP29W2*A3

70 FORMAT(1IH094X94HN Gl64e6o5X,4NP =61'.695X951IW2 x G14.,9SHA3
zG?22e14)

90 RETURN
END

-ITERATION 4

SUSPOUTINE FUNEV
COMMON T!MEDELTNSTARTNFIPSTNEX!T. IPASSQO4COt2(O94)
REAL Kl*K29KTI9KT29N9N0

* REAL N0,NP1,NPlONHN.N1DNP2.NP2ONH2,NNZD
REAL NP39N1439NP3D*N143D
REAL NP49NH4qNP4D9N40
DATA TVASKTJ.KT2,TAUJ .TAIJ?RI11SRS/RO.,.04,32.2,32.?,1.,2...00

1100.004/
IF (NSTART) 30.50.30
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10 READ(5,20)NPIOPPlW2,NP2,PP2,NP3.PP3,NP4,PP4,NM4,PH4

CALL INTG(NPID*NPI)
CALL INTG(PPlD*PPI)
CALL INTG(NPZDoNP2)

CALL INTG(PP2D9PP2)
CALL JNTG(NP3D9NP3)
CALL IeTG(PP3DPP3
CALL INTG(NP4DNP.)
CALL INTG(PP4D*PP4)

j * CALL INTG (P'4D*PN'.j
* CALL INT6(NM4DNI4)

CALL PRINT(ION S(T)910MG12*4 .5,1,0.e)
CALL PRINT!IOH NP1D91ON91,G1*4 *fPID*39,)
CALL PRINT(IOM NPI 91O9.IG12.'. ,tP191909)
CALL PRINT(IOH PPlD,10NG1 .4 *PPID,390.)
CALL PRINTOM PPI 910M.GI2.. oPP1,1,Oo)
CALL PRINT(1014 NP2DtlOM9Gl?.4 oNP2D*39O.)
CALL PRINT(1ON NP2 91OMgG12*4 *NP291,O.)
CALL PRINMtON PP2D,10I4,Gl~o4 oPP2D%3*09)
CALL PRINTC1OH PP2 91OHoGl?*4 OPP291900)
CALL PRINT(1ON NP3Dtl0M9Gl~o4 gNP3D*3,O.)
CALL PQINT(1ON NP3 91OHG12.4 9NP3,j,0.)
CALL PPINT(IOH PP3Dol0HGl2o4 *PP3Dt3.0.)
CALL PRINT(1H PP3 ol0MGI2.4 *PP3*19O.)
CALL PRINT(OM NP4DtlOMGl~o4 oNP4D*39O.)
CALL P.RINT(OH NP'. ,10t1,Gle4 9NP4910o.)
CALL PRINT(10M PP4D,10NGl~o4 ,PP4D*39O.)
CALL PRINT(lO4 PP'. *jt% & *PP49190a)
CALL P.RINT(1OM Nb4D91OH02*14 eNe44D*390*)
CALL PRINT(OH NM'. 91ON9GI.4 eNH4910o.)
CALL PRINT(1D P*4D9kOM9612*4 9PH4D*39O.)
CALL PRINT(I0H P914 *10MG1*4 9P491909.O)

30 CALL PRINMT~Otf KI(T)9lOH~bl?.4 9KT1,S.O.)
CALL PRINT(1094 K2(T)91OH.GI.'. 9KT2*5*O.)
&QFTIJRPN

50 TGO=TF-T IME
T11 .-EXP(-TGO/TAUI) .TCO/TAUI
T2=e-FEP (-TGO/TAU?) -TGO/TAU2

E.b*eP31 %iR?2S/ (6.*Rlq1 2SASKI*2 2S(6.*TAUI@'2'*TGO)-6.*TAU

4fl/TAU2f)
Kl:AS*KTI*O2*TA~il**ZOT*/IIS

9 NO=.O000O015
POxn)OUOo*EXP(-.*OTIME)

12*S*S
* PPlDu-Z.OKIrnPO*NP3.ae(K1NOKI.S.P0,W2).PPI.PO*PO/W2.?..K1.NO*PO

NP2fl=?.*(KI.NP1.K).5.PPI/W2).NP2#.,**NPI.PP2/W2..,q*NPI.NPI.?.*NP3.P
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1 P1/w2*K2*S*S
PP?2-2**K1*PPIONP?2.*(KIONP 1.KIeS*PPl/w2).ppppPP1*P/W2.2..K1.N

NP3D~ae*(K*NP2.K*SPP2/W2)*NP32..NP2*PP3/W2-K1.NP2*NPa-2..NP2.P
1P2/W2*K2*S*S
PP3D:-2.*K1.PP2.NP3-2..(K1.NP2.K1.R.PP2/W2) *PP3.PP2ePP2/W2.2.eK1*N
IPa*PP2
NP4O=2.*(K1*NP3,K1*S.PP3/W2)*NP4.2..NP3*PP4/W2-K1.NP3*NP3-2o*NP3*P
IP3/W2*K2*S*S
PP4D:-2.*K1*PP3*NP4-2.*IK1*NP-3.K1*S.PP3/W2)*PP4,PP3*PP3/W2.2..K1.N
)P3*PP3
NH4D=2.*(K1*NP3.K1*S.PP3/W2)*NH4.2o*NP3*PH4/W2
Pt4D-2.*K1*PP3*NH4-Z.* (Kl1*NP3.K1.S.PP3/W2)*PH4
IF(NFIRST)60980960

60 A4=-NP4/NH4
WRITE (6,70)NIPl*NP29w29A4

70 FORMAT41HO94X,4HN * 14*69SX94HP = 14o6,5X,5HW2 614.695MA4
1:622.1')

S0 RETURN
ENL)

-FINAL SOLUTION

SUBROUTINE FUNEV
COMMON TIMEDELT,9dSTARTNFIRSTNEXIT, IPASS.ROMCON(2094)
REAL K1,K29KTI*KT2*N*NO
REAL NONPI.NPID.NI!NHlDNP2,NP2DNH2,NH2O
REAL NP39N'139NP3O.NH3O
REAL NP4. NH4, NP4D. NH4I
REAL N02.N02l.JlJ JD.J2.J2D.JRI.JR2,JRII.JR12,JR21,JR22,NND2
DATA TFASKT1,KT2,TAU1,TAUZRJ 1SR?2S/10.,.04,32.2932.291. ,2.,.OO

11v.004/
IF (NSTART) 30950,10

10 READ(S,20)NP1,PPl.W2,NP2,PP2,NP3,PP3,NP4,PP4,P2
20 FORMATC4E20*0)

CALL INTG(NPIDNPI)
CALL INTG(PPIDoPPI)
CALL INTGCNP2DNP2)
CALL INTG(PPZDPP2)
CALL INTG(NP3DNP3)
CALL INTG(PP309PP3)
CALL INTG(NP4DNP.)
CALL INTG(PP4DPP4)
CALL. INTG(POoP2)
CALL INTG(JID.JI)

*CALL INTG(J2D9J2)
CALL PPINT(I0H S(T)9ION.G1?.4 os.1.0.o)
CALL PRINT(IO NPlDolONGl2o4 oNP1O,390*)
CALL PRINT~lON NPI *AON.012*4 *NP190*O)
CALL PRINT(I0N PPlD*1OH*G12'. *PPID939O.)
CALL PRINT(10N PPI .10)4,612.' oPP1,1,0.)
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CALL PRINT(10H NP2D9IOH9GI2.4 oNP2D,39O.)
CALL PRINT(OH NP2 9ION9G12*4 *t1P2919O.)

CALL PRINT(ION PP2 v1OH9GI2e4 #PP2*190*)
CALL PRINT(OH NP3DolOH9G12o4 oNP3D,390.)
CALL PRINT(IOH NP3 9IOHG12*4 *P99o
CALL PRINT(I1N PP3Dt1OM9Gl2o4 ,PP3D,390.)
CALL PRINT(OH PP3 *1OHoG12*4 9PP3*19O.)
CALL PRINT(OH NP4D,1OHGl2o4 ,NP4D93,Oe)
CALL PRINT(1OH NP4 910H*G12*4 oNP4,1909)
CALL PRINT(IOH PP4D~lOH9G12o4 9PP4D93,0.)
CALL PRINT(1OH PP4 .1011,612*4 *PP491909)
CALL PRINT(IOH ND2 91011,612.4 ,ND2919,)

*CALL PRINT(I0H ND21,1011,GI2*4 9N0219190e)
CALL PRINT(IO4 NND29IOHGI294 *NND29190.)
CALL PRINT(ION 615 .1011,612.4 O615,1.0.)
CALL PRINTIION G29 91011.612*4 .625.1,0.)
CALL PRINTO101 GINZ,1011,612o4 . .IN2,1.0.)
CALL PRINT(1011 G1N191011,G12*4 ,G1NI10.)

*CALL PRINT(10H GIN .1011,612.4 pGlN9Ip0*)
CALL PRINT(1011 P2D .1011,612.4 9P2D*39,)
CALL PRINT(I0H P2 .1011,612.' 9P29190,)
CALL PRINT(IOH AD1 .1011.612.4 9JID.390e)

*CALL PRINT(1H Ai .1011.612.' *J191906)
CALL PRINTOO01 J2D .1011.612.' *J2D.390.)
CALL PRINaT(IOl J2 91011,612.4 qJ19190)
CALL PRINT(10N JRI1111.612.' 9JR11.1.09b
CALL PQINT(IOH JR12910H961294 9JR129190.)
CALL PRINT(101 JR21.1011,612.4 9JR21919O.)
CALL PPINT(11 JR2291011.612' 9JR2291*0*)
CALL PRINT(10H JR1 .1011.612.6 qJR1.1q,)
CALL PRINT(1011 JR2 .1011,612.6 *JR29190e)

30 CALL PRINT(IOl KI(T).1011.G1?.4 qK1.5.0.)
CALL PRINT(109( K2(T)91011.612*4 9K2*5.0.)
A=SORT(AS)
R112SORT(RIIS)
R22=SQRT (R?2S)
31
RETURN

50 TG~xTF-TIME
Tlul .-EXP(-TGO/TAU ) -TGO/TAUI
T?z .-EXP (-TGO/TAU2)-TG0/TAU2
Sub.*R1 IS*R25/ (6.*R1 15*R225.AS*KTI**2*P22S* (b..TAuI*2*TGO-6..TAU
llOT6OO*2.2..TCI0o*3.3..TAUl..3.(l.-FXP(-2.*T6O0/TAUI))-l?.OTAUlO.?OT
2GO.EXP(-TGO/TAU) )-AS*KT2*24R115*(6..TAU2..2.TGO-6..TAU2*TGO..2.?
3.eTGO..3.3..TAIJ2..*3.(1.-EXP(-2..T7fl/TAt)2))-12..TAU2..2.TG0.EXP(-TG
40OTAU2)))
K1SAS*KTI**2*TAUI**2*TI@*2/R1 15
K2=AS*KT2**2*TAU2**2oT2**2/R22S
tOD?a6..RI 15/ c6..R1 S4ASeKT1'.2* (6*TAU*2.TGO-6..TAUI.TGO*2??*T

4 16GO*O3*3.*TAUI1*3@(11EXP(2eTGO/TAIJI))12*TAU1@O2TO*EP(Trl/T
2AU1I))

155



94

I

I


